Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Dong Yun-
dc.contributor.authorKim, Min Hyeong-
dc.contributor.authorOh, Yong Suk-
dc.contributor.authorJung, Soo-Ho-
dc.contributor.authorJung, Jae Hee-
dc.contributor.authorSung, Hyung Jin-
dc.contributor.authorLee, Hyung Woo-
dc.contributor.authorLee, Hye Moon-
dc.date.accessioned2024-01-20T02:31:17Z-
dc.date.available2024-01-20T02:31:17Z-
dc.date.created2021-09-05-
dc.date.issued2017-01-18-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123187-
dc.description.abstractA highly stretchable, low-cost strain sensor was successfully prepared using an extremely cost-effective ionic liquid of ethylene glycol/sodium chloride. The hysteresis performance of the ionic-liquid-based sensor was able to be improved by introducing a wavy-shaped fluidic channel diminishing the hysteresis by the viscoelastic relaxation of elastomers. From the simulations on visco-hyperelastic behavior of the elastomeric channel, we demonstrated that the wavy structure can offer lower energy dissipation compared to a flat structure under a given deformation. The resistance response of the ionic-liquid-based wavy (ILBW) sensor was fairly deterministic with no hysteresis, and it was well-matched to the theoretically estimated curves. The ILBW sensors exhibited a low degree of hysteresis (0.15% at 250%), low overshoot (1.7% at 150% strain), and outstanding durability (3000 cycles at 300% strain). The ILBW sensor has excellent potential for use in precise and quantitative strain detections in various areas, such as human motion monitoring, healthcare, virtual reality, and smart clothes.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectCARBON NANOTUBES-
dc.subjectELASTOMERS-
dc.subjectSKIN-
dc.subjectTRANSPARENT-
dc.subjectELECTRONICS-
dc.subjectDESIGN-
dc.subjectSOFT-
dc.subjectCOMPOSITES-
dc.subjectNETWORKS-
dc.subjectFILMS-
dc.titleHighly Stretchable, Hysteresis-Free Ionic Liquid -Based Strain Sensor for Precise Human Motion Monitoring-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.6b12415-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.9, no.2, pp.1770 - 1780-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume9-
dc.citation.number2-
dc.citation.startPage1770-
dc.citation.endPage1780-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000392458300066-
dc.identifier.scopusid2-s2.0-85026381166-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusELASTOMERS-
dc.subject.keywordPlusSKIN-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSOFT-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorstretchable sensor-
dc.subject.keywordAuthorstrain sensor-
dc.subject.keywordAuthorhuman motion detection-
dc.subject.keywordAuthorionic liquid-
dc.subject.keywordAuthorviscoelastic effect-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE