Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Jae Hun | - |
dc.contributor.author | Song, Ho Jun | - |
dc.contributor.author | Jung, Jin | - |
dc.contributor.author | Yu, Jin Won | - |
dc.contributor.author | You, Nam-Ho | - |
dc.contributor.author | Goh, Munju | - |
dc.date.accessioned | 2024-01-20T02:33:02Z | - |
dc.date.available | 2024-01-20T02:33:02Z | - |
dc.date.created | 2021-09-04 | - |
dc.date.issued | 2017-01 | - |
dc.identifier.issn | 0021-8995 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/123284 | - |
dc.description.abstract | The effect of the polymeric crosslink density on the thermal conductivity of an epoxy nanocomposite was investigated by adding two different diamine-functionalized multiwalled carbon nanotubes (diamine-MWNTs) to the epoxy resin as co-curing agents and conducting fillers. Tetramethylenediamine (TMDA)-MWNTs resulted in an epoxy nanocomposite with a higher crosslink density than octamethylenediamine (OMDA)-MWNTs. Interestingly, epoxy/TMDA-MWNT nanocomposites under 1.5 wt % nanotube concentration, showed a higher thermal conductivity than an epoxy/OMDA-MWNT nanocomposite with the same concentration of nanotubes. In contrast, for higher diamine-MWNT concentrations (over 2.0 wt %), the thermal conductivity of the epoxy/OMDA-MWNT nanocomposite was higher than that with TMDA-MWNTs. We observed that for low MWNT concentrations, where a percolating network was not formed, a high crosslink density enhanced the thermal conductivity via phonon transport. However, for high MWNT concentrations, a high crosslink density hinders the formation of a percolating network and lowers the thermal conductivity. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44253. | - |
dc.language | English | - |
dc.publisher | John Wiley & Sons Inc. | - |
dc.title | Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/app.44253 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Applied Polymer Science, v.134, no.4 | - |
dc.citation.title | Journal of Applied Polymer Science | - |
dc.citation.volume | 134 | - |
dc.citation.number | 4 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000386939600006 | - |
dc.identifier.scopusid | 2-s2.0-84992451755 | - |
dc.relation.journalWebOfScienceCategory | Polymer Science | - |
dc.relation.journalResearchArea | Polymer Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CARBON NANOTUBE | - |
dc.subject.keywordPlus | THERMOELECTRIC-MATERIALS | - |
dc.subject.keywordPlus | PHONON-SCATTERING | - |
dc.subject.keywordPlus | EPOXY THERMOSETS | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | VISCOELASTICITY | - |
dc.subject.keywordPlus | RESISTANCE | - |
dc.subject.keywordPlus | PROPERTY | - |
dc.subject.keywordPlus | POLYMERS | - |
dc.subject.keywordPlus | STATES | - |
dc.subject.keywordAuthor | composites | - |
dc.subject.keywordAuthor | crosslinking | - |
dc.subject.keywordAuthor | graphene and fullerenes | - |
dc.subject.keywordAuthor | nanotubes | - |
dc.subject.keywordAuthor | thermal properties | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.