Full metadata record

DC Field Value Language
dc.contributor.authorBarange, Nilesh-
dc.contributor.authorChu, Van Ben-
dc.contributor.authorNam, Minwoo-
dc.contributor.authorAhn, In-Hwan-
dc.contributor.authorKim, Young Dong-
dc.contributor.authorHan, Il Ki-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorKo, Doo-Hyun-
dc.date.accessioned2024-01-20T02:34:35Z-
dc.date.available2024-01-20T02:34:35Z-
dc.date.created2021-09-05-
dc.date.issued2016-12-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123369-
dc.description.abstractNanopatterned CuInGaS2 (CIGS) thin films synthesized by a sol-gel-based solution method and a nanoimprint lithography technique to achieve simultaneous photonic and electrical enhancements in thin film solar cell applications are demonstrated. The interdigitated CIGS nanopatterns in adjacent CdS layer form an ordered nanoscale heterojunction of optical contrast to create a light trapping architecture. This architecture concomitantly leads to increased junction area between the p-CIGS/n-CdS interface, and thereby influences effective charge transport. The electron beam induced current and capacitance-voltage characterization further supports the large carrier collection area and small depletion region of the nanopatterned CIGS solar cell devices. This strategic geometry affords localization of incident light inside and between the nanopatterns, where created excitons are easily dissociated, and it leads to the enhanced current generation of absorbed light. Ultimately, this approach improves the efficiency of the nanopatterned CIGS solar cell by 55% compared to its planar counterpart, and offers the possibility of simultaneous management for absorption and charge transport through a nanopatterning process.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleOrdered Nanoscale Heterojunction Architecture for Enhanced Solution-Based CuInGaS2 Thin Film Solar Cell Performance-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.201601114-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.6, no.24-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume6-
dc.citation.number24-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000396320500006-
dc.identifier.scopusid2-s2.0-84984852069-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOVOLTAICS-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusPRECURSORS-
dc.subject.keywordPlusBINARY-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusINKS-
dc.subject.keywordAuthorCuInGaS2 (CIGS) solar cells-
dc.subject.keywordAuthorimprint-
dc.subject.keywordAuthornanopatterning-
dc.subject.keywordAuthoroptical and electrical management-
dc.subject.keywordAuthorsolution process-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE