Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Jeong-
dc.contributor.authorIm, Min Ji-
dc.contributor.authorKim, Chan Ul-
dc.contributor.authorWon, Sang Hyuk-
dc.contributor.authorKang, Sung Bum-
dc.contributor.authorKang, Sung Ho-
dc.contributor.authorChoi, In Taek-
dc.contributor.authorKim, Hwan Kyu-
dc.contributor.authorKim, In Ho-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorChoi, Kyoung Jin-
dc.date.accessioned2024-01-20T03:00:47Z-
dc.date.available2024-01-20T03:00:47Z-
dc.date.created2021-09-03-
dc.date.issued2016-12-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123406-
dc.description.abstractTandem architectures using organic/inorganic hybrid semiconductors are a promising strategy to overcome the Shockley-Queisser limit of single-junction (SJ) solar cells as already demonstrated in III-V compound semiconductors. Here, we present a highly-efficient dye-sensitized solar cell (DSSC)/silicon (Si) monolithic tandem cell by utilizing PEDOT: FTS as an interfacial catalytic layer, which has higher transparency and lower charge-transfer resistance compared to conventional Pt. In addition, the amount of dye adsorbed on the surface of TiO2 nanoparticles is fine-tuned for precise current matching between the two sub-cells. Based on these rational approaches, the DSSC/Si tandem cell exhibited a much higher power-conversion efficiency (PCE) of 17.2% compared to the stand-alone SJ devices of DSSCs (-11.4%) or Si (-12.3%) cells. The PCE of the best tandem cell is 18.1%. To the best of our knowledge, our tandem cell has a record-high PCE among all tandem cells involving DSSCs and also the highest improvement of PCE among all tandem cells based on dissimilar photovoltaic materials. The 2-terminal DSSC/Si tandem solar cells exhibit a high V-oc value of 1.36 V. The DSSC/Si tandem solar cells are externally connected to a Pt electro-catalyst for use as water splitting cells. Solar-to-hydrogen conversion was accomplished at 0.65 V vs. Pt bias. We expect that a tandem architecture based on organic-inorganic hybrid materials can provide a promising way to realize low-cost and high-efficiency photovoltaic devices for solar cells and hydrogen generation.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.subjectSILICON-
dc.subjectELECTRODE-
dc.subjectGRAPHENE-
dc.subjectPOLYMER-
dc.subjectCIGS-
dc.titleTwo-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency-
dc.typeArticle-
dc.identifier.doi10.1039/c6ee02296k-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.9, no.12, pp.3657 - 3665-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume9-
dc.citation.number12-
dc.citation.startPage3657-
dc.citation.endPage3665-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000392915500005-
dc.identifier.scopusid2-s2.0-85002664897-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusCIGS-
dc.subject.keywordAuthorTandem solar cells-
dc.subject.keywordAuthorDSSC-
dc.subject.keywordAuthorcrystalline silicon solar cells-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE