Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jaehoon-
dc.contributor.authorJeong, Byeong Guk-
dc.contributor.authorRoh, Heebum-
dc.contributor.authorSong, Jiyun-
dc.contributor.authorPark, Myeongjin-
dc.contributor.authorLee, Doh C.-
dc.contributor.authorBae, Wan Ki-
dc.contributor.authorLee, Changhee-
dc.date.accessioned2024-01-20T03:31:30Z-
dc.date.available2024-01-20T03:31:30Z-
dc.date.created2021-09-04-
dc.date.issued2016-09-14-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123678-
dc.description.abstractWe report the influence of post-treatment via the external pressure on the device performance of quantum dot (QD) solar cells. The structural: analysis together with optical and electrical characterization on QD solids reveal that the external,pressure compacts QD active layers by removing the mesoscopic voids and enhances the charge carrier transport-along QD solids leading to significant increase in J(SC) of QD solar cells. Increasing the external pressure, by contrast, accompanies reduction in FE and V-OC, yielding the trade-off relationship among J(SC), and FF and V-OC in PCE of devices. Optimization at the external pressure in the present study at 1.4-1.6 MPa enables us to achieve over 10% increase in PCE of QD solar cells. The approach and results show that the control over the organization of QDs is the key for the-charge transport properties in ensemble and also offer simple yet effective; mean to enhance the electrical performance of transistors and solar cells using QDs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectPHOTOVOLTAICS-
dc.subjectNANOPARTICLES-
dc.subjectSTRATEGIES-
dc.subjectEFFICIENCY-
dc.subjectSOLIDS-
dc.subjectARRAYS-
dc.titleInfluence of External Pressure on the Performance of Quantum Dot Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.6b07771-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.8, no.36, pp.23947 - 23952-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume8-
dc.citation.number36-
dc.citation.startPage23947-
dc.citation.endPage23952-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000383412000057-
dc.identifier.scopusid2-s2.0-84987752570-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOVOLTAICS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordAuthorsolar cells-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorpressure-
dc.subject.keywordAuthordensification-
dc.subject.keywordAuthorcompression-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE