Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Sang-Soon | - |
dc.contributor.author | Kim, Ju-Heon | - |
dc.contributor.author | Kwon, Beomjin | - |
dc.contributor.author | Kim, Seong Keun | - |
dc.contributor.author | Park, Hyung-Ho | - |
dc.contributor.author | Lee, Ki-Suk | - |
dc.contributor.author | Baik, Jeong Min | - |
dc.contributor.author | Choi, Won Jun | - |
dc.contributor.author | Kim, Dong-Ik | - |
dc.contributor.author | Hyun, Dow-Bin | - |
dc.contributor.author | Kim, Jin-Sang | - |
dc.contributor.author | Baek, Seung-Hyub | - |
dc.date.accessioned | 2024-01-20T03:31:38Z | - |
dc.date.available | 2024-01-20T03:31:38Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2016-09-05 | - |
dc.identifier.issn | 0925-8388 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/123685 | - |
dc.description.abstract | As a field-assisted technique, spark plasma sintering (SPS) enables densification of specimens in a very short period of time compared to other sintering techniques. For high performance thermoelectric material synthesis, SPS is widely used to fabricate nanograin-structured thermoelectric materials by rapidly densifying the nanopowders suppressing grain growth. However, the microstructural evolution behavior of thermoelectric materials by SPS, another important process during sintering, has been rarely studied. Here, we explore SPS as a tool to control the microstructure by long-time SPS. Using p-type (Bi0.25Sb0.75)(2)Te-3 thermoelectric materials as a model system, we systematically vary SPS temperature and time to understand the correlations between SPS conditions, microstructural evolution, and the thermoelectric properties. Our results show that the relatively low eutectic temperature (similar to 420 degrees C) and the existence of volatile tellurium (Te) are critical factors to determine both microstructure and thermoelectric property. In the liquid-phase sintering regime, rapid evaporation of Te leads to a strong dependence of thermoelectric property on SPS time. On the other hand, in the solid-phase sintering regime, there is a weak dependence on SPS time. The optimum thermoelectric figure-of-merit (Z) of 2.93 x 10 (3)/K is achieved by SPS at 500 degrees C for 30 min. Our results will provide an insight on the optimization of SPS conditions for materials containing volatile elements with low eutectic temperature. (C) 2016 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.subject | CRYSTAL-GROWTH | - |
dc.subject | SINTERING/SYNTHESIS PROCESS | - |
dc.subject | FUNDAMENTAL INVESTIGATIONS | - |
dc.subject | PERFORMANCE | - |
dc.subject | CONSOLIDATION | - |
dc.subject | TEMPERATURE | - |
dc.subject | TELLURIDE | - |
dc.subject | SPS | - |
dc.title | Effect of spark plasma sintering conditions on the thermoelectric properties of (Bi0.25Sb0.75)(2)Te-3 alloys | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jallcom.2016.03.284 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF ALLOYS AND COMPOUNDS, v.678, pp.396 - 402 | - |
dc.citation.title | JOURNAL OF ALLOYS AND COMPOUNDS | - |
dc.citation.volume | 678 | - |
dc.citation.startPage | 396 | - |
dc.citation.endPage | 402 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000376102400056 | - |
dc.identifier.scopusid | 2-s2.0-84963543081 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CRYSTAL-GROWTH | - |
dc.subject.keywordPlus | SINTERING/SYNTHESIS PROCESS | - |
dc.subject.keywordPlus | FUNDAMENTAL INVESTIGATIONS | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | CONSOLIDATION | - |
dc.subject.keywordPlus | TEMPERATURE | - |
dc.subject.keywordPlus | TELLURIDE | - |
dc.subject.keywordPlus | SPS | - |
dc.subject.keywordAuthor | Thermoelectric | - |
dc.subject.keywordAuthor | Bismuth antimony telluride | - |
dc.subject.keywordAuthor | Spark plasma sintering | - |
dc.subject.keywordAuthor | Microstructure | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.