Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jin Hee-
dc.contributor.authorCho, Jinwon-
dc.contributor.authorJeon, Mina-
dc.contributor.authorRidwan, Muhammad-
dc.contributor.authorPark, Hyun S.-
dc.contributor.authorChoi, Sun Hee-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorLim, Tae-Hoon-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorYoon, Chang Won-
dc.date.accessioned2024-01-20T03:34:43Z-
dc.date.available2024-01-20T03:34:43Z-
dc.date.created2021-09-03-
dc.date.issued2016-08-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123856-
dc.description.abstractThe critical role of the ligand effect and ensemble effect in enhancing formic acid (FA) dehydrogenation over PdAu catalysts was highlighted by both experimental and theoretical studies. FA dehydrogenation energy was calculated by DFT on PdAu model catalysts of different surface atomic arrangements. The Pd3Au1 surface exhibited the lowest reaction energy and kinetic barrier for FA dehydrogenation among four different PdAu surfaces. The Pd trimer played a critical role in stabilizing reaction intermediates. The experimental FA dehydrogenation activity of three different PdAu catalysts supported the theoretical results. In addition, the electronic interaction between the surface and subsurface layers also proved to contribute to the improved catalytic activity of PdAu catalysts via modification of Pd d states.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectROOM-TEMPERATURE DEHYDROGENATION-
dc.subjectHYDROGEN-STORAGE-
dc.subjectALLOY NANOPARTICLES-
dc.subjectCO ADSORPTION-
dc.subjectBIMETALLIC CATALYSTS-
dc.subjectAU-PD-
dc.subjectDECOMPOSITION-
dc.subjectGENERATION-
dc.subjectOXIDATION-
dc.subjectENERGY-
dc.titleExperimental and computational studies of formic acid dehydrogenation over PdAu: influence of ensemble and ligand effects on catalysis-
dc.typeArticle-
dc.identifier.doi10.1039/c6ta03654f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.4, no.37, pp.14141 - 14147-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume4-
dc.citation.number37-
dc.citation.startPage14141-
dc.citation.endPage14147-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000384444200009-
dc.identifier.scopusid2-s2.0-84988643484-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusROOM-TEMPERATURE DEHYDROGENATION-
dc.subject.keywordPlusHYDROGEN-STORAGE-
dc.subject.keywordPlusALLOY NANOPARTICLES-
dc.subject.keywordPlusCO ADSORPTION-
dc.subject.keywordPlusBIMETALLIC CATALYSTS-
dc.subject.keywordPlusAU-PD-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorHydrogen Storage-
dc.subject.keywordAuthor수소저장-
dc.subject.keywordAuthorFormic acid-
dc.subject.keywordAuthor개미산-
dc.subject.keywordAuthorEnergy Storage-
dc.subject.keywordAuthor에너지 저장-
dc.subject.keywordAuthorHydrogen production-
dc.subject.keywordAuthor수소생산-
dc.subject.keywordAuthorCatalyst-
dc.subject.keywordAuthor촉매-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE