Differential Effects of Quercetin and Quercetin Glycosides on Human alpha 7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents
- Authors
 - Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol
 
- Issue Date
 - 2016-07-01
 
- Publisher
 - KOREAN SOC APPLIED PHARMACOLOGY
 
- Citation
 - BIOMOLECULES & THERAPEUTICS, v.24, no.4, pp.410 - 417
 
- Abstract
 - Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance alpha 7 nicotinic acetylcholine receptor (alpha 7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of alpha 7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (I-ACh) in Xenopus oocytes expressing the alpha 7 nAChR. I-ACh was measured with a two-electrode voltage clamp technique. In oocytes injected with alpha 7 nAChR copy RNA, quercetin enhanced I-ACh, whereas quercetin glycosides inhibited I-ACh. Quercetin glycosides mediated an inhibition of I-ACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of I-ACh inhibition by quercetin glycosides was Rutin >= Rham1>Rham2. Quercetin glycosides -mediated lath enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated I-ACh, inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated alpha 7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the alpha 7 nAChR in a differential manner.
 
- Keywords
 - CENTRAL-NERVOUS-SYSTEM; MOLECULAR-CLONING; XENOPUS OOCYTES; CHANNEL DOMAIN; FLAVONOIDS; MUTATIONS; FAMILY; METABOLISM; CALCIUM; GENE; CENTRAL-NERVOUS-SYSTEM; MOLECULAR-CLONING; XENOPUS OOCYTES; CHANNEL DOMAIN; FLAVONOIDS; MUTATIONS; FAMILY; METABOLISM; CALCIUM; GENE; Flavonoids; Quercetin; Quercetin glycosides; alpha 7 nAChR
 
- ISSN
 - 1976-9148
 
- URI
 - https://pubs.kist.re.kr/handle/201004/123882
 
- DOI
 - 10.4062/biomolther.2015.153
 
- Appears in Collections:
 - KIST Article > 2016
 
- Export
 - RIS (EndNote)
 - XLS (Excel)
 - XML
 
  
        
        Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.