Full metadata record

DC Field Value Language
dc.contributor.authorAlYami, Noktan M.-
dc.contributor.authorLaGrow, Alec P.-
dc.contributor.authorJoya, Khurram S.-
dc.contributor.authorHwang, Jinyeon-
dc.contributor.authorKatsiev, Khabiboulakh-
dc.contributor.authorAnjum, Dalaver H.-
dc.contributor.authorLosovyj, Yaroslav-
dc.contributor.authorSinatra, Lutfan-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorBakr, Osman M.-
dc.date.accessioned2024-01-20T04:01:58Z-
dc.date.available2024-01-20T04:01:58Z-
dc.date.created2021-09-04-
dc.date.issued2016-06-28-
dc.identifier.issn1463-9076-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123948-
dc.description.abstractThe catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a similar to 2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectSHAPE-CONTROLLED SYNTHESIS-
dc.subjectWATER-OXIDATION-
dc.subjectMETHANOL ELECTROOXIDATION-
dc.subjectNANOPARTICLE CATALYSTS-
dc.subjectALLOY NANOPARTICLES-
dc.subjectELECTRON-TRANSFER-
dc.subjectCOLLOIDAL METAL-
dc.subjectPHOTOSYSTEM-II-
dc.subjectFUEL-CELLS-
dc.subjectSIZE-
dc.titleTailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction-
dc.typeArticle-
dc.identifier.doi10.1039/c6cp01401a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.18, no.24, pp.16169 - 16178-
dc.citation.titlePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.volume18-
dc.citation.number24-
dc.citation.startPage16169-
dc.citation.endPage16178-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000381056500013-
dc.identifier.scopusid2-s2.0-84975156661-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSHAPE-CONTROLLED SYNTHESIS-
dc.subject.keywordPlusWATER-OXIDATION-
dc.subject.keywordPlusMETHANOL ELECTROOXIDATION-
dc.subject.keywordPlusNANOPARTICLE CATALYSTS-
dc.subject.keywordPlusALLOY NANOPARTICLES-
dc.subject.keywordPlusELECTRON-TRANSFER-
dc.subject.keywordPlusCOLLOIDAL METAL-
dc.subject.keywordPlusPHOTOSYSTEM-II-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusSIZE-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE