Full metadata record

DC Field Value Language
dc.contributor.authorPark, Junsu-
dc.contributor.authorKim, Minseok-
dc.contributor.authorYeom, Seung-Won-
dc.contributor.authorHa, Hyeon Jun-
dc.contributor.authorSong, Hyenggun-
dc.contributor.authorJhon, Young Min-
dc.contributor.authorKim, Yun-Hi-
dc.contributor.authorJu, Byeong-Kwon-
dc.date.accessioned2024-01-20T04:02:24Z-
dc.date.available2024-01-20T04:02:24Z-
dc.date.created2021-09-05-
dc.date.issued2016-06-03-
dc.identifier.issn0957-4484-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123973-
dc.description.abstractWe report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly (methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm(2) V-1 s(-1) for the p-channel and 0.027 cm(2) V-1 s(-1) for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectPOLYMER-
dc.subjectTRANSPORT-
dc.subjectINJECTION-
dc.subjectDISPLAYS-
dc.titleFlexible ambipolar organic field-effect transistors with reverse-offset-printed silver electrodes for a complementary inverter-
dc.typeArticle-
dc.identifier.doi10.1088/0957-4484/27/22/225302-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.27, no.22-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume27-
dc.citation.number22-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000374767500010-
dc.identifier.scopusid2-s2.0-84965022915-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusINJECTION-
dc.subject.keywordPlusDISPLAYS-
dc.subject.keywordAuthorprinted electronics-
dc.subject.keywordAuthorreverse offset printing-
dc.subject.keywordAuthorambipolarity-
dc.subject.keywordAuthororganic semiconductor-
dc.subject.keywordAuthorfield-effect transistors-
dc.subject.keywordAuthorcomplementary inverter-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE