Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Myung-Seok-
dc.contributor.authorJeong, Inyoung-
dc.contributor.authorPark, Joon-Suh-
dc.contributor.authorLee, Jinwoo-
dc.contributor.authorHan, Il Ki-
dc.contributor.authorLee, Wan In-
dc.contributor.authorSon, Hae Jung-
dc.contributor.authorSohn, Byeong-Hyeok-
dc.contributor.authorKo, Min Jae-
dc.date.accessioned2024-01-20T04:03:30Z-
dc.date.available2024-01-20T04:03:30Z-
dc.date.created2021-09-03-
dc.date.issued2016-06-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124035-
dc.description.abstractWe fabricated perovskite solar cells with enhanced device efficiency based on vertically oriented TiO2 nanostructures using a nanoporous template of block copolymers (BCPs). The dimension and shape controllability of the nanopores of the BCP template allowed for the construction of one-dimensional (1-D) TiO2 nanorods and two-dimensional (2-D) TiO2 nanowalls. The TiO2 nanorod-based perovskite solar cells showed a more efficient charge separation and a lower charge recombination, leading to better performance compared to TiO2 nanowall-based solar cells. The best solar cells employing 1-D TiO2 nanorods showed an efficiency of 15.5% with V-OC = 1.02 V, J(SC) = 20.0 mA cm(-2) and fill factor = 76.1%. Thus, TiO2 nanostructures fabricated from BCP nanotemplates could be applied to the preparation of electron transport layers for improving the efficiency of perovskite solar cells.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectHALIDE PEROVSKITES-
dc.subjectARRAYS-
dc.subjectPERFORMANCE-
dc.subjectPLANAR-
dc.subjectLIGHT-
dc.subjectCH3NH3PBI3-
dc.subjectTRANSPORT-
dc.subjectNANORODS-
dc.subjectLAYER-
dc.titleVertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach-
dc.typeArticle-
dc.identifier.doi10.1039/c6nr01010e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.8, no.22, pp.11472 - 11479-
dc.citation.titleNANOSCALE-
dc.citation.volume8-
dc.citation.number22-
dc.citation.startPage11472-
dc.citation.endPage11479-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000377919800019-
dc.identifier.scopusid2-s2.0-84973548702-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHALIDE PEROVSKITES-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPLANAR-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordPlusCH3NH3PBI3-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusLAYER-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordAuthorblock copolymer-
dc.subject.keywordAuthorTiO2 photoelectrode-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE