Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyun Su-
dc.contributor.authorBae, Hyun Sung-
dc.contributor.authorYu, Jaesang-
dc.contributor.authorKim, Seong Yun-
dc.date.accessioned2024-01-20T04:03:50Z-
dc.date.available2024-01-20T04:03:50Z-
dc.date.created2021-09-04-
dc.date.issued2016-05-25-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124051-
dc.description.abstractOne of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m.K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m.K).-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectCARBON-NANOTUBE COMPOSITES-
dc.subjectTHERMOPLASTIC COMPOSITES-
dc.subjectSYNERGISTIC IMPROVEMENT-
dc.subjectTHEORETICAL APPROACH-
dc.subjectINTERFACE LAYERS-
dc.subjectTHROUGH-PLANE-
dc.subjectHEAT-FLOW-
dc.subjectFILLERS-
dc.subjectDISPERSION-
dc.subjectFIBER-
dc.titleThermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets-
dc.typeArticle-
dc.identifier.doi10.1038/srep26825-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.6-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume6-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000376502700001-
dc.identifier.scopusid2-s2.0-84971324195-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-NANOTUBE COMPOSITES-
dc.subject.keywordPlusTHERMOPLASTIC COMPOSITES-
dc.subject.keywordPlusSYNERGISTIC IMPROVEMENT-
dc.subject.keywordPlusTHEORETICAL APPROACH-
dc.subject.keywordPlusINTERFACE LAYERS-
dc.subject.keywordPlusTHROUGH-PLANE-
dc.subject.keywordPlusHEAT-FLOW-
dc.subject.keywordPlusFILLERS-
dc.subject.keywordPlusDISPERSION-
dc.subject.keywordPlusFIBER-
dc.subject.keywordAuthor열전도도-
dc.subject.keywordAuthorThermal conductivity-
dc.subject.keywordAuthor복합소재-
dc.subject.keywordAuthorComposite-
dc.subject.keywordAuthor그래핀-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthor나노-
dc.subject.keywordAuthorNano-
dc.subject.keywordAuthor마이크로 CT-
dc.subject.keywordAuthorMicro-CT-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE