Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jeongyeon-
dc.contributor.authorLee, Joong Kee-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorKim, Haesik-
dc.contributor.authorMun, Junyoung-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-20T04:04:13Z-
dc.date.available2024-01-20T04:04:13Z-
dc.date.created2021-09-05-
dc.date.issued2016-05-10-
dc.identifier.issn0013-4686-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124071-
dc.description.abstractWe report the electrochemical behaviors of TiO2-B nanowire electrodes exhibiting a high operating potential where they can avoid severe Na plating and a de-sodiation capacity of 196 mAh g(-1), which is the highest among several types of titanium oxides reported for sodium ion batteries. When TiO2-B nanowires are used as negative electrodes for sodium ion batteries, 1 mole of the TiO2-B nanowire can take up approximately 1 mole of sodium ions during the sodiation process and reversibly relieve 0.6 mole of intercalated sodium during the subsequent de-sodiation process. It has been proved that TiO2-B nanowire electrodes participate in a reversible single-phase Na insertion/desertion reaction during charge and discharge. The electrodes exhibit irreversible capacity, owing to electrolyte decomposition and residual irreversible Na insertion, as determined via in situ XRD, ICP, FE-SEM, XPS, and electrochemical analyses. Further, TiO2-B is a superior material exhibiting long and stable cyclability with a specific capacity of 150 mAh g(-1) over 50 cycles. (C) 2016 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectLITHIATED LAYERED OXIDE-
dc.subjectPOTENTIAL ANODE-
dc.subjectELECTRODE-
dc.subjectINTERCALATION-
dc.subjectNANOPARTICLES-
dc.subjectPERFORMANCE-
dc.subjectSTABILITY-
dc.subjectNANOTUBES-
dc.subjectINSERTION-
dc.subjectNANORODS-
dc.titleElectrochemical Investigations on TiO2-B Nanowires as a Promising High Capacity Anode for Sodium-ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.electacta.2016.03.110-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTROCHIMICA ACTA, v.200, pp.21 - 28-
dc.citation.titleELECTROCHIMICA ACTA-
dc.citation.volume200-
dc.citation.startPage21-
dc.citation.endPage28-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000375128900003-
dc.identifier.scopusid2-s2.0-84962028230-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIATED LAYERED OXIDE-
dc.subject.keywordPlusPOTENTIAL ANODE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordAuthorsodium-ion batteries-
dc.subject.keywordAuthortitanate-
dc.subject.keywordAuthornanowires-
dc.subject.keywordAuthorbronze-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE