Full metadata record

DC Field Value Language
dc.contributor.authorBae, Kiho-
dc.contributor.authorLee, Sewook-
dc.contributor.authorJang, Dong Young-
dc.contributor.authorKim, Hyun Joong-
dc.contributor.authorLee, Hunhyeong-
dc.contributor.authorShin, Dongwook-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorShim, Joon Hyung-
dc.date.accessioned2024-01-20T04:31:39Z-
dc.date.available2024-01-20T04:31:39Z-
dc.date.created2021-09-05-
dc.date.issued2016-04-13-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124171-
dc.description.abstractIn this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe0.5Zr0.35Y0.15O3-delta (BCZY) with increasing BCZY contents toward the electrolyte -anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 mu m thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 degrees C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectCHEMICAL-STABILITY-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectFUNCTIONAL LAYER-
dc.subjectCONDUCTIVITY-
dc.subjectFABRICATION-
dc.subjectMICROSTRUCTURES-
dc.subjectCONDUCTORS-
dc.subjectEFFICIENCY-
dc.titleHigh-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.6b00512-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.8, no.14, pp.9097 - 9103-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume8-
dc.citation.number14-
dc.citation.startPage9097-
dc.citation.endPage9103-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000374274900029-
dc.identifier.scopusid2-s2.0-84964882708-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHEMICAL-STABILITY-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusFUNCTIONAL LAYER-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusMICROSTRUCTURES-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordAuthorprotonic ceramic fuel cells-
dc.subject.keywordAuthorgradient anode functional layer-
dc.subject.keywordAuthorthin-film electrolytes-
dc.subject.keywordAuthoryttrium-doped barium cerate-zirconate-
dc.subject.keywordAuthorlow-temperature performance-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE