Full metadata record

DC Field Value Language
dc.contributor.authorHa, Junhyoung-
dc.contributor.authorKang, Donghoon-
dc.contributor.authorPark, Frank C.-
dc.date.accessioned2024-01-20T04:32:25Z-
dc.date.available2024-01-20T04:32:25Z-
dc.date.created2021-09-05-
dc.date.issued2016-04-
dc.identifier.issn0278-0046-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124213-
dc.description.abstractIn the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X, Y that best fit a set of equalities of the form A(i)X = Y B-i, i = 1, . . . , N, where the {(A(i), B-i)} are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectSIMULTANEOUS ROBOT-WORLD-
dc.subjectSYSTEM-
dc.titleA Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem-
dc.typeArticle-
dc.identifier.doi10.1109/TIE.2015.2505690-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, v.63, no.4, pp.2434 - 2446-
dc.citation.titleIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS-
dc.citation.volume63-
dc.citation.number4-
dc.citation.startPage2434-
dc.citation.endPage2446-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000372645900045-
dc.identifier.scopusid2-s2.0-84963735470-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusSIMULTANEOUS ROBOT-WORLD-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorGeometric optimization-
dc.subject.keywordAuthorhand-eye calibration-
dc.subject.keywordAuthorrobot sensor calibration-
dc.subject.keywordAuthorrobot-world calibration-
dc.subject.keywordAuthorstochastic global optimization-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE