Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jung Sub-
dc.contributor.authorKim, A-Young-
dc.contributor.authorByeon, Young Woon-
dc.contributor.authorAhn, Jae Pyoung-
dc.contributor.authorByun, Dongjin-
dc.contributor.authorLee, Joong Kee-
dc.date.accessioned2024-01-20T04:33:43Z-
dc.date.available2024-01-20T04:33:43Z-
dc.date.created2021-09-05-
dc.date.issued2016-03-20-
dc.identifier.issn0013-4686-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124281-
dc.description.abstractGermanium-based multimetallic-oxide materials have attracted significant attention as high-capacity anodes for next generation lithium-ion batteries (LIBs). However, they suffer from poor cyclic stability due to extreme volume expansion and reduced electrical conductivity after repeated cycles. To circumvent these issues, we propose that Ge-based multimetallic-oxide nanowires can be synthesized with electrically conductive carbon to significantly enhance the cyclic stability of the Ge-based anodes. We prepare conformal-carbon-coated Zn2GeO4 nanowires (NWs) using a microwave-induced hydrothermal method with subsequent thermal decomposition. The obtained carbon-coated Zn2GeO4-NW anode exhibits a discharge capacity of 485 mAh/g and a Coulombic efficiency (CE) of 98.4% after 900 cycles at 0.6 C. Furthermore, these anodes exhibit outstanding rate-capability characteristics, even with an increased C-rate of 17.7 C. This excellent electrochemical performance can be ascribed to the improved electron and ion transport provided and the structurally reinforced conductive layer comprising a conformal carbon layer. Therefore, it is expected that our approach can also be applied to other multimetallic-oxide materials, resulting in large, reversible capacities; excellent cyclic stabilities; and good rate capabilities for high-performance LIBs. (C) 2016 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectELECTROCHEMICAL LITHIATION-
dc.subjectGE-
dc.subjectPERFORMANCE-
dc.subjectCAPACITY-
dc.subjectSILICON-
dc.subjectNANOCOMPOSITES-
dc.subjectELECTRODES-
dc.titlePorous Zn2GeO4 nanowires with uniform carbon-buffer layer for lithium-ion battery anodes with long cycle life-
dc.typeArticle-
dc.identifier.doi10.1016/j.electacta.2016.02.118-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTROCHIMICA ACTA, v.195, pp.43 - 50-
dc.citation.titleELECTROCHIMICA ACTA-
dc.citation.volume195-
dc.citation.startPage43-
dc.citation.endPage50-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000372524300006-
dc.identifier.scopusid2-s2.0-84959364789-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL LITHIATION-
dc.subject.keywordPlusGE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthorZn2GeO4-
dc.subject.keywordAuthornanowires-
dc.subject.keywordAuthorcarbon-buffer layers-
dc.subject.keywordAuthorlong cycle life-
dc.subject.keywordAuthorlithium-ion batteries-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE