A Comparative Study of Nanoparticle-Ink-Based CIGSSe Thin Film Solar Cells on Different Back Contact Substrates

Authors
Park, Se JinCho, Jin WooPark, Gi SoonJeong, Jae SeungKim, JihyunKo, Doo-HyunHwang, Yun JeongMin, Byoung Koun
Issue Date
2016-03
Publisher
WILEY-V C H VERLAG GMBH
Citation
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, v.37, no.3, pp.361 - 365
Abstract
The effect of the back contact electrode in nanoparticle-ink-based CIGSSe solar cells was investigated using different glass substrates with either a fluorine-doped SnO2 (FTO) conducting layer or a molybdenum (Mo) conducting layer. The morphologies, crystal structures, and compositional distributions of the Cu(In (x) Ga1- (x) )(S (y) Se1- (y) )(2)(CIGSSe) films are very similar in spite of the different back contact materials. The observed performances of the solar cell device, however, are somewhat different. The device that was fabricated on the FTO back contact substrate revealed a lower open-circuit voltage ( V (oc)) and fill factor (FF) than the Mo back contact substrate, resulting in lower solar cell efficiencies (6.5% for FTO and 7.4% for Mo). The differences between the behaviors are attributed to the interfacial properties between the CIGSSe film and the back contact electrode.
Keywords
LOW-COST; PRECURSORS; LOW-COST; PRECURSORS; CIGSSe; Solar cells; TCO; Solution process; Back contact
ISSN
0253-2964
URI
https://pubs.kist.re.kr/handle/201004/124332
DOI
10.1002/bkcs.10684
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE