Full metadata record

DC Field Value Language
dc.contributor.authorWin, Theint Theint-
dc.contributor.authorKim, Hyemin-
dc.contributor.authorCho, Kangwoo-
dc.contributor.authorSong, Kyung Guen-
dc.contributor.authorPark, Joonhong-
dc.date.accessioned2024-01-20T05:02:06Z-
dc.date.available2024-01-20T05:02:06Z-
dc.date.created2021-09-05-
dc.date.issued2016-02-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124434-
dc.description.abstractAn anaerobic moving bed membrane bioreactor (AnMBMBR) fed with synthetic domestic wastewater was investigated under hydraulic retention time (HRT) shocks to assess the effects on the microbial (bacteria and archaea) community and reactor performance. 16S rDNA targeted polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach was optimized to relate the metabolic and community composition with biogas generation, methane content and COD removal efficiency. From the drastic decrease of HRT (from 8 h to 4 h), the methane production was significantly reduced due to the HRT shock, while the COD removal efficiency was not affected. The enhanced growth of homoacetogenic bacteria, Thermoanaerobacteraceae competes with methanogens under shock period. When the HRT was recovered to 8 h, the methane generation rate was higher than the initial operation before the shock HRT changes, which would be ascribed to the activity of new emerging hydrogenotrophic archaea, Methanocella sp. and Methanofollis sp. (C) 2015 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectGRADIENT GEL-ELECTROPHORESIS-
dc.subjectWASTE-WATER-
dc.subjectDIVERSITY-
dc.subjectDNA-
dc.subjectIDENTIFICATION-
dc.subjectMETHANOGENS-
dc.subjectPOTENTIALS-
dc.titleMonitoring the microbial community shift throughout the shock changes of hydraulic retention time in an anaerobic moving bed membrane bioreactor-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2015.11.085-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIORESOURCE TECHNOLOGY, v.202, pp.125 - 132-
dc.citation.titleBIORESOURCE TECHNOLOGY-
dc.citation.volume202-
dc.citation.startPage125-
dc.citation.endPage132-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000367673500017-
dc.identifier.scopusid2-s2.0-84954173007-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRADIENT GEL-ELECTROPHORESIS-
dc.subject.keywordPlusWASTE-WATER-
dc.subject.keywordPlusDIVERSITY-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusMETHANOGENS-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordAuthorAnMBMBR-
dc.subject.keywordAuthorPCR-DGGE-
dc.subject.keywordAuthorBiogas-
dc.subject.keywordAuthorHRT shock-
dc.subject.keywordAuthorMicrobial community-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE