Full metadata record

DC Field Value Language
dc.contributor.authorHan, Hyung-Seop-
dc.contributor.authorPark, Nayoung-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorNam, Ho-Seok-
dc.contributor.authorSeok, Hyun-Kwang-
dc.contributor.authorKim, Won Tae-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorCha, Pil-Ryung-
dc.date.accessioned2024-01-20T05:02:32Z-
dc.date.available2024-01-20T05:02:32Z-
dc.date.created2021-09-05-
dc.date.issued2016-02-
dc.identifier.issn0966-9795-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124458-
dc.description.abstractGlass forming ability (GFA) for some alloys may be difficult to explain in kinetic point of view alone and the thermodynamics must be considered as an important factor. Herein, investigation of the atomic size effect on the glass forming ability based on the molecular dynamics simulations for binary alloys with Lennard-Jones Embedded Atom Method potentials have been performed. The findings from this study showed that the size effect is accompanied by the change of phase diagram from solid solution to eutectic and change in the local stress/internal energy, which could contributes more to GFA than the kinetic factors such as efficient packing and resulting sluggish atomic transport. (c) 2015 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectSUPERCOOLED LIQUID-
dc.subjectPHASE COEXISTENCE-
dc.subjectSTRUCTURAL MODEL-
dc.subjectSIMULATION-
dc.subjectDENSITY-
dc.subjectINTEGRATION-
dc.subjectFRAGILITY-
dc.titleReassessing the atomic size effect on glass forming ability: Effect of atomic size difference on thermodynamics and kinetics-
dc.typeArticle-
dc.identifier.doi10.1016/j.intermet.2015.10.021-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERMETALLICS, v.69, pp.123 - 127-
dc.citation.titleINTERMETALLICS-
dc.citation.volume69-
dc.citation.startPage123-
dc.citation.endPage127-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000366772700020-
dc.identifier.scopusid2-s2.0-84947932630-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSUPERCOOLED LIQUID-
dc.subject.keywordPlusPHASE COEXISTENCE-
dc.subject.keywordPlusSTRUCTURAL MODEL-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusINTEGRATION-
dc.subject.keywordPlusFRAGILITY-
dc.subject.keywordAuthorMetallic glasses-
dc.subject.keywordAuthorGlass forming ability-
dc.subject.keywordAuthorAtomic packing density-
dc.subject.keywordAuthorPhase transformation-
dc.subject.keywordAuthorPhase stability-
dc.subject.keywordAuthorMolecular dynamics simulation-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE