Full metadata record

DC Field Value Language
dc.contributor.authorKim, Soo-
dc.contributor.authorNoh, Jae-Kyo-
dc.contributor.authorAykol, Muratahan-
dc.contributor.authorLu, Zhi-
dc.contributor.authorKim, Haesik-
dc.contributor.authorChoi, Wonchang-
dc.contributor.authorKim, Chunjoong-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorWolverton, Chris-
dc.contributor.authorCho, Byung-Won-
dc.date.accessioned2024-01-20T05:03:26Z-
dc.date.available2024-01-20T05:03:26Z-
dc.date.created2021-09-04-
dc.date.issued2016-01-13-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124507-
dc.description.abstractIn this work, we report the electrochemical properties of 0.5Li(2)MnO(3)center dot 0.25LiNi(0.5)Co(0.2)Mn(0.3)O(2)center dot 0.25Li-Ni0.5Mn1.5O4 and 0.333Li(2)MnO(3)center dot 0.333Li-Ni0.5Co0.2Mn0.3O2 center dot 0.333LiNi(0.5)Mn(1.5)O(4) layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of similar to 200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectX-RAY-DIFFRACTION-
dc.subjectELECTRODE MATERIALS-
dc.subjectCO ELECTRODES-
dc.subjectHIGH-VOLTAGE-
dc.subjectNI-
dc.subjectMN-
dc.subjectHYSTERESIS-
dc.subjectBEHAVIOR-
dc.titleLayered-Layered-Spinel Cathode Materials Prepared by a High Energy Ball-Milling Process for Lithium-ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5b08906-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.8, no.1, pp.363 - 370-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume8-
dc.citation.number1-
dc.citation.startPage363-
dc.citation.endPage370-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000368563000045-
dc.identifier.scopusid2-s2.0-84954411920-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusCO ELECTRODES-
dc.subject.keywordPlusHIGH-VOLTAGE-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusHYSTERESIS-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordAuthorthree-component electrode-
dc.subject.keywordAuthorlayered-layered-spinel cathode-
dc.subject.keywordAuthorhigh-energy ball-milling process-
dc.subject.keywordAuthornanocomposite-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE