Full metadata record

DC Field Value Language
dc.contributor.authorGo, Gwang Sub-
dc.contributor.authorLee, Hong Joo-
dc.contributor.authorMoon, Dong Ju-
dc.contributor.authorKim, Young Chul-
dc.date.accessioned2024-01-20T05:03:47Z-
dc.date.available2024-01-20T05:03:47Z-
dc.date.created2022-01-25-
dc.date.issued2016-01-
dc.identifier.issn0922-6168-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124525-
dc.description.abstractIn this study, we focused on the catalytic activity, stability, and kinetics of glycerol steam reforming (GSR) for the hydrogen production over Ni-Fe-Ce/Al2O3 catalyst. The GSR was investigated in a quartz fixed-bed reactor with an internal diameter of 6 mm under atmospheric pressure, 18.44-44.56 g h/mol weight of catalyst per molar flow rate of glycerol at the inlet (W (cat)/F (AO) ratio), 20 wt% glycerol solution concentration, and the temperature range 450-550 A degrees C. Ni-Fe-Ce/Al2O3 catalyst was characterized by N-2 physisorption [Brunauer-Emmett-Teller (BET) method], X-ray spectroscopy, temperature-programmed reduction with H-2, temperature-programmed desorption of adsorbed CO2 (CO2-TPD), scanning electron microscopy, and thermogravimetric analysis. H-2, CO2, CO and CH4 were the main gaseous products with the H-2:CO2 ratio at roughly 2.00. The increase in the temperature and W (cat)/F (AO) ratio caused the expected increase in the glycerol conversion and H-2 yield. All the kinetic parameters for the GSR were obtained in the kinetically controlled reaction regime. The experimental data using the power-law method indicate that the reaction order with respect to glycerol and the activation energy were 0.06 and 32.9 kJ/mol, respectively.-
dc.languageEnglish-
dc.publisherSpringer Verlag-
dc.titleGlycerol steam reforming over Ni-Fe-Ce/Al2O3 catalyst for hydrogen production-
dc.typeArticle-
dc.identifier.doi10.1007/s11164-015-2324-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationResearch on Chemical Intermediates, v.42, no.1, pp.289 - 304-
dc.citation.titleResearch on Chemical Intermediates-
dc.citation.volume42-
dc.citation.number1-
dc.citation.startPage289-
dc.citation.endPage304-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000370163300022-
dc.identifier.scopusid2-s2.0-84958154541-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusCARBON DEPOSITION-
dc.subject.keywordPlusNI/GAMMA-AL2O3 CATALYSTS-
dc.subject.keywordPlusBIMETALLIC CO-NI/AL2O3-
dc.subject.keywordPlusNI/AL2O3 CATALYST-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusREACTOR-
dc.subject.keywordPlusSYNGAS-
dc.subject.keywordPlusGAS-
dc.subject.keywordAuthorGlycerol steam reforming-
dc.subject.keywordAuthorNi-based catalyst-
dc.subject.keywordAuthorHydrogen production-
dc.subject.keywordAuthorKinetics-
dc.subject.keywordAuthorPower-law method-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE