Full metadata record

DC Field Value Language
dc.contributor.authorKim, Kwang-Chon-
dc.contributor.authorKwon, Beomjin-
dc.contributor.authorKim, Hyun Jae-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorHyun, Dow-Bin-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorKim, Jin-Sang-
dc.date.accessioned2024-01-20T06:00:57Z-
dc.date.available2024-01-20T06:00:57Z-
dc.date.created2021-09-05-
dc.date.issued2015-10-30-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124865-
dc.description.abstractSn-doped Bi2Te3 films were grown on vicinal GaAs (0 0 1) substrates by metal-organic chemical vapor deposition at 360 degrees C. Trimethylbismuth and diisopropyltellurium, which are alkyl-based, were used as the Bi and Te sources, respectively. Tetrakis(dimethylamino)tin (TDMASn) and tetramethyltin (TMSn) were used as the Sn precursors. Both Sn precursors successfully converted the carrier type of the Bi2Te3 films from n- to p-type and achieved a high Seebeck coefficient. In the case of the Sn-doped Bi2Te3 films with TDMASn, however, the Sn concentration could not be monotonically controlled by the amount of the precursor, and even the hole concentration was almost invariant despite the drastic increase in the amount of the precursor. In the case of the Sn-doped Bi2Te3 films grown with TMSn, on the other hand, the Sn and hole concentrations could be easily controlled by the variation in the flow rate of the H-2 carrier gas. In particular, the hole concentration varied over a range of 1-5 10(19)/cm(3) in which a thermoelectric power factor can be maximized despite a very high vapor pressure of TMSn. The growth of high-quality Sn-doped Bi2Te3 films was possible using all alkyl-based precursors. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectSUPERLATTICE STRUCTURES-
dc.subjectTEMPERATURE-
dc.subjectENHANCEMENT-
dc.subjectGROWTH-
dc.subjectMICROSTRUCTURE-
dc.subjectBI2TE2.7SE0.3-
dc.subjectEPITAXY-
dc.subjectDEVICES-
dc.titleSn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2015.06.106-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.353, pp.232 - 237-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume353-
dc.citation.startPage232-
dc.citation.endPage237-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000361220700030-
dc.identifier.scopusid2-s2.0-84941945363-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSUPERLATTICE STRUCTURES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusBI2TE2.7SE0.3-
dc.subject.keywordPlusEPITAXY-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordAuthorBi2Te3 films-
dc.subject.keywordAuthorChemical vapor deposition-
dc.subject.keywordAuthorEpitaxial growth-
dc.subject.keywordAuthorSn doping-
dc.subject.keywordAuthorp-type-
dc.subject.keywordAuthorSeebeck enhancement-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE