Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Soon-Bum-
dc.contributor.authorLee, Jong Suk-
dc.contributor.authorKwon, Soon Jin-
dc.contributor.authorYun, Seong-Taek-
dc.contributor.authorLee, Seockheon-
dc.contributor.authorLee, Jung-Hyun-
dc.date.accessioned2024-01-20T06:31:16Z-
dc.date.available2024-01-20T06:31:16Z-
dc.date.created2021-09-04-
dc.date.issued2015-08-15-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125120-
dc.description.abstractA recently devised, molecular layer-by-layer (mLbL) approach based on the alternative cross linking of monomers was employed to fabricate high-performance thin film composite (TFC) forward osmosis (FO) membranes with excellent rejection toward monovalent NaCl salt. An ultrathin and highly dense polyamide (PA) selective layer with a precisely controlled structure was created on a tailored porous support via mLbL. The intrinsic separation properties of the rnLbL-assembled TFC membranes were tuned by adjusting the mLbL cycle number to optimize the FO performance. The best FO performance was achieved at 10 rnLbL cycles (mLbL-10), where the permeability and selectivity were properly balanced. Importantly, the mLbL-10 membrane exhibited superior FO performance compared to the commercial HTI FO membranes as well as hand Cast TFC membranes prepared by the conventional interfacial polymerization: the rnLbL-10 membrane showed similar to 3.5 Limes higher wafer flux, similar to 60% lower reverse salt flux and similar to 85% lower specific salt flux compared to the cellulose triacetate HTI membrane, with 0.5 M NaCl draw solution and DI water teed solution in FO mode. The stability and the associated membrane performance of the mLbL-assembled membrane depending on the ionic strength of the environment were explained by the swelling behavior of the polyelectrolyte-assembled interlayer adhered underneath the PA selective layer. (C) 2015 Elsevier By. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectTHIN-FILM-COMPOSITE-
dc.subjectINTERNAL CONCENTRATION POLARIZATION-
dc.subjectPRESSURE RETARDED OSMOSIS-
dc.subjectPOLYELECTROLYTE MULTILAYER MEMBRANES-
dc.subjectENGINEERED OSMOSIS-
dc.subjectPOWER-GENERATION-
dc.subjectHIGH-PERFORMANCE-
dc.subjectSUPPORT LAYER-
dc.subjectFO MEMBRANES-
dc.subjectWATER FLUX-
dc.titleMolecular layer-by-layer assembled forward osmosis membranes-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2015.04.015-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.488, pp.111 - 120-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume488-
dc.citation.startPage111-
dc.citation.endPage120-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000354814300010-
dc.identifier.scopusid2-s2.0-84928712480-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM-COMPOSITE-
dc.subject.keywordPlusINTERNAL CONCENTRATION POLARIZATION-
dc.subject.keywordPlusPRESSURE RETARDED OSMOSIS-
dc.subject.keywordPlusPOLYELECTROLYTE MULTILAYER MEMBRANES-
dc.subject.keywordPlusENGINEERED OSMOSIS-
dc.subject.keywordPlusPOWER-GENERATION-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusSUPPORT LAYER-
dc.subject.keywordPlusFO MEMBRANES-
dc.subject.keywordPlusWATER FLUX-
dc.subject.keywordAuthorMolecular layer-by-layer-
dc.subject.keywordAuthorPolyamide-
dc.subject.keywordAuthorThin film composite membranes-
dc.subject.keywordAuthorForward osmosis-
dc.subject.keywordAuthorDesalination-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE