Full metadata record

DC Field Value Language
dc.contributor.authorSaha, Sanjit-
dc.contributor.authorJana, Milan-
dc.contributor.authorKhanra, Partha-
dc.contributor.authorSamanta, Pranab-
dc.contributor.authorKoo, Hyeyoung-
dc.contributor.authorMurmu, Naresh Chandra-
dc.contributor.authorKuila, Tapas-
dc.date.accessioned2024-01-20T06:33:32Z-
dc.date.available2024-01-20T06:33:32Z-
dc.date.created2021-09-05-
dc.date.issued2015-07-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125240-
dc.description.abstractNanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of similar to 824 F g(-1) achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of similar to 4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectATOMIC LAYERS-
dc.subjectFABRICATION-
dc.subjectNANOWIRE-
dc.subjectCOMPOSITES-
dc.subjectNANOSHEETS-
dc.subjectREDUCTION-
dc.subjectNANOTUBES-
dc.subjectARRAYS-
dc.subjectFOAM-
dc.titleBand Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5b03562-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.7, no.26, pp.14211 - 14222-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume7-
dc.citation.number26-
dc.citation.startPage14211-
dc.citation.endPage14222-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000357963700007-
dc.identifier.scopusid2-s2.0-84936887122-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusATOMIC LAYERS-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusNANOWIRE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusFOAM-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorboron nitride-
dc.subject.keywordAuthorband gap-
dc.subject.keywordAuthorsupercapacitor-
dc.subject.keywordAuthorenergy density-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE