Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Saha, Sanjit | - |
dc.contributor.author | Jana, Milan | - |
dc.contributor.author | Khanra, Partha | - |
dc.contributor.author | Samanta, Pranab | - |
dc.contributor.author | Koo, Hyeyoung | - |
dc.contributor.author | Murmu, Naresh Chandra | - |
dc.contributor.author | Kuila, Tapas | - |
dc.date.accessioned | 2024-01-20T06:33:32Z | - |
dc.date.available | 2024-01-20T06:33:32Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2015-07-08 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/125240 | - |
dc.description.abstract | Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of similar to 824 F g(-1) achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of similar to 4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | ATOMIC LAYERS | - |
dc.subject | FABRICATION | - |
dc.subject | NANOWIRE | - |
dc.subject | COMPOSITES | - |
dc.subject | NANOSHEETS | - |
dc.subject | REDUCTION | - |
dc.subject | NANOTUBES | - |
dc.subject | ARRAYS | - |
dc.subject | FOAM | - |
dc.title | Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.5b03562 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.7, no.26, pp.14211 - 14222 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 7 | - |
dc.citation.number | 26 | - |
dc.citation.startPage | 14211 | - |
dc.citation.endPage | 14222 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000357963700007 | - |
dc.identifier.scopusid | 2-s2.0-84936887122 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ATOMIC LAYERS | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | NANOWIRE | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | NANOTUBES | - |
dc.subject.keywordPlus | ARRAYS | - |
dc.subject.keywordPlus | FOAM | - |
dc.subject.keywordAuthor | graphene | - |
dc.subject.keywordAuthor | boron nitride | - |
dc.subject.keywordAuthor | band gap | - |
dc.subject.keywordAuthor | supercapacitor | - |
dc.subject.keywordAuthor | energy density | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.