Full metadata record

DC Field Value Language
dc.contributor.authorYu, Chan-Yeop-
dc.contributor.authorPark, Jae-Sang-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorChung, Kyung-Yoon-
dc.contributor.authorAurbach, Doron-
dc.contributor.authorSun, Yang-Kook-
dc.contributor.authorMyung, Seung-Taek-
dc.date.accessioned2024-01-20T06:33:52Z-
dc.date.available2024-01-20T06:33:52Z-
dc.date.created2021-09-05-
dc.date.issued2015-07-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125258-
dc.description.abstractSodium-ion batteries offer a potential alternative or complementary system to lithium-ion batteries, which are widely used in many applications. For this purpose, layered O3-type NaCrO2 for use as a cathode material in sodium-ion batteries was synthesized via an emulsion-drying method. The produced NaCrO2 was modified using pitch as a carbon source and the products were tested in half and full cells using a NaPF6-based nonaqueous electrolyte solution. The carbon-coated NaCrO2 cathode material exhibits excellent capacity retention with superior rate capability up to a rate of 150 C (99 mA h (g oxide)(-1)), which corresponds to full discharge during 27 s. The surface conducting carbon layer plays a critically important role in the excellent performance of this cathode material. We confirmed the reaction process with sodium using X-ray diffraction and X-ray absorption spectroscopy. Thermal analysis using time-resolved X-ray diffraction also demonstrated the structural stability of carbon-coated Na0.5CrO2. Due to the excellent performance of the cathode material described herein, this study has the potential to promote the accelerated development of sodium-ion batteries for a large number of applications.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.subjectELECTROCHEMICAL INTERCALATION-
dc.subjectLAYERED NACRO2-
dc.titleNaCrO2 cathode for high-rate sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1039/c5ee00695c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.8, no.7, pp.2019 - 2026-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume8-
dc.citation.number7-
dc.citation.startPage2019-
dc.citation.endPage2026-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000357541300014-
dc.identifier.scopusid2-s2.0-84936862900-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL INTERCALATION-
dc.subject.keywordPlusLAYERED NACRO2-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE