Full metadata record

DC Field Value Language
dc.contributor.authorHink, Steffen-
dc.contributor.authorNgoc My Hanh Duong-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorNam, Suk-Woo-
dc.date.accessioned2024-01-20T06:34:37Z-
dc.date.available2024-01-20T06:34:37Z-
dc.date.created2021-09-04-
dc.date.issued2015-07-
dc.identifier.issn0167-2738-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125300-
dc.description.abstractPolysulfone-based membranes with pyridine (PY) side chains, crosslinked by imidazole (IM) groups, are synthesised, doped with phosphoric acid (PA) and characterised in the hydrogen/air fuel cell at 160 degrees C. It is shown that the bisphenol A (BPA) group of Udel P-3500 (Solvay) acts as a breaking point, and Radel R-5000 NT (Solvay)-based membranes, in which BPA is substituted for biphenyl, show superior stability. Undoped membranes show thermal stability of up to 330 degrees C (3% weight loss, 10 degrees C/min, nitrogen). PA-doped membranes: The weight gain during acid doping is limited by the high crosslink density, and independent of the doping temperature. By varying the ratio of pyridine to imidazole units from 2:1 to 9:1, the PA uptake can be controlled between 200 and 500 wt%, respectively. The Young modulus increases with the crosslinking density from 12 to 129 MPa. Proton conductivity of the PY/IM 2:1 membrane at 160 degrees C reaches 59 mS/cm. In the fuel cell, the PY/IM 2:1 membrane achieved a potential of ca. 500 mV at 0.2 A/cm(2). After 430 h (330 h at 02 A/cm(2), then 0.4 A/cm(2)), the cell failed, and postmortem analysis suggested severe chemical degradation. Washing the membrane with ammonia solution before doping increased the stability further. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleRadel-based membranes with pyridine and imidazole side groups for high temperature polymer electrolyte fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.ssi.2015.03.026-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolid State Ionics, v.275, pp.80 - 85-
dc.citation.titleSolid State Ionics-
dc.citation.volume275-
dc.citation.startPage80-
dc.citation.endPage85-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000355372700018-
dc.identifier.scopusid2-s2.0-84934315945-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOPED POLYBENZIMIDAZOLE MEMBRANES-
dc.subject.keywordPlusAROMATIC POLYETHERS-
dc.subject.keywordPlusCROSS-LINKING-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordAuthorHT PEMFC-
dc.subject.keywordAuthorRadel-
dc.subject.keywordAuthorPyridine-
dc.subject.keywordAuthorCrosslinked membrane-
dc.subject.keywordAuthorPhosphoric acid doping-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE