Full metadata record

DC Field Value Language
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorPovoden-Karadeniz, Erwin-
dc.contributor.authorKozeschnik, Ernst-
dc.contributor.authorWirth, Brian D.-
dc.date.accessioned2024-01-20T06:34:46Z-
dc.date.available2024-01-20T06:34:46Z-
dc.date.created2021-09-04-
dc.date.issued2015-07-
dc.identifier.issn0022-3115-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125308-
dc.description.abstractThe long-term evolution of precipitates in type 316 austenitic stainless steels at 400 degrees C has been simulated using a numerical model based on classical nucleation theory and the thermodynamic extremum principle. Particular attention has been paid to the precipitation of radiation-induced phases such as gamma' and G phases. In addition to the original compositions, the compositions for radiation-induced segregation at a dose level of 5, 10 or 20 dpa have been used in the simulation. In a 316 austenitic stainless steel, gamma' appears as the main precipitate with a small amount of G phase forming at 10 and 20 dpa. On the other hand, G phase becomes relatively dominant over gamma' at the same dose levels in a Ti-stabilized 316 austenitic stainless steel, which tends to suppress the formation of gamma'. Among the segregated alloying elements, the concentration of Si seems to be the most critical for the formation of radiation-induced phases. An increase in dislocation density as well as increased diffusivity of Mn and Si significantly enhances the precipitation kinetics of the radiation-induced phases within this model. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectRADIATION-INDUCED SEGREGATION-
dc.subjectGRAIN-BOUNDARY SEGREGATION-
dc.subjectSTRESS-CORROSION CRACKING-
dc.subjectMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subjectATOM-PROBE TOMOGRAPHY-
dc.subjectMICROSTRUCTURAL EVOLUTION-
dc.subjectCR DEPLETION-
dc.subjectALLOYS-
dc.subject304-STAINLESS-STEEL-
dc.subjectBEHAVIOR-
dc.titleModeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation-
dc.typeArticle-
dc.identifier.doi10.1016/j.jnucmat.2015.04.013-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF NUCLEAR MATERIALS, v.462, pp.250 - 257-
dc.citation.titleJOURNAL OF NUCLEAR MATERIALS-
dc.citation.volume462-
dc.citation.startPage250-
dc.citation.endPage257-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000357545900028-
dc.identifier.scopusid2-s2.0-84928478601-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNuclear Science & Technology-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaNuclear Science & Technology-
dc.type.docTypeArticle-
dc.subject.keywordPlusRADIATION-INDUCED SEGREGATION-
dc.subject.keywordPlusGRAIN-BOUNDARY SEGREGATION-
dc.subject.keywordPlusSTRESS-CORROSION CRACKING-
dc.subject.keywordPlusMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subject.keywordPlusATOM-PROBE TOMOGRAPHY-
dc.subject.keywordPlusMICROSTRUCTURAL EVOLUTION-
dc.subject.keywordPlusCR DEPLETION-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlus304-STAINLESS-STEEL-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorRadiation-induced segregation-
dc.subject.keywordAuthorRadiation-induced phase-
dc.subject.keywordAuthorPrecipitation-
dc.subject.keywordAuthorKinetic simulation-
dc.subject.keywordAuthorAustenitic stainless steel-
dc.subject.keywordAuthorNeutron irradiation-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE