Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

Authors
Ji, Jun HoKim, Jong BumLee, GwangjaeNoh, Jung-HunYook, Se-JinCho, So-HyeBae, Gwi-Nam
Issue Date
2015-06
Publisher
HINDAWI LTD
Citation
BIOMED RESEARCH INTERNATIONAL, v.2015
Abstract
Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD).
Keywords
CARBON NANOTUBE; TIO2; FINE; CARBON NANOTUBE; TIO2; FINE; workplace; exposure; titanium dioxide; nanopowder; bag filter system
ISSN
2314-6133
URI
https://pubs.kist.re.kr/handle/201004/125361
DOI
10.1155/2015/524283
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE