Full metadata record

DC Field Value Language
dc.contributor.authorNugroho, Agung-
dc.contributor.authorYoon, Dohyeon-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-20T07:01:22Z-
dc.date.available2024-01-20T07:01:22Z-
dc.date.created2021-09-05-
dc.date.issued2015-06-
dc.identifier.issn0896-8446-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125370-
dc.description.abstractLi4Ti5O12/carbon (LTO/C) nanocomposites are synthesized by preparing surface-modified LTO nanoparticles in supercritical methanol and subsequently calcinating the modified LTO under an Ar/H-2 condition. The effects of surface modifiers with different functional groups and chain lengths (oleylamine, oleic acid, hexylamine). on the particle morphology, particle size, crystallinity, carbon structure, and electrochemical properties are examined. During heat treatment at 750 degrees C, the carbonization of the modifiers attached to the surface of LTO effectively inhibit the particle growth and reduce some of the Ti4+ in LTO to Ti3+. A higher degree of surface modification, in the order of oleylamine > hexylamine > oleic acid, results in a higher carbon content, smaller particle size, and higher Ti3+ content; these factors may result in better battery performance of the LTO/C synthesized using oleylamine. At a low rate of 0.1 C, the LTO/C samples synthesized using the different surface modifiers exhibit similar discharge capacities of 175 mA h/g (which approaches the theoretical capacity of LTO), while at a high rate of 10 C, the discharge capacities are in the order of oleylamine (147.1 mA h/g) > hexylamine (124.2 mA h/g) > oleic acid (101.5 mA h/g). The LTO/C nanocomposites prepared using the three different surface modifiers exhibit excellent cyclability up to 200 cycles at 1.0 C. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectCARBON-COATED LI4TI5O12-
dc.subjectRATE ELECTRODE MATERIAL-
dc.subjectLITHIUM-ION-
dc.subjectFACILE SYNTHESIS-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectOXIDE NANOPARTICLES-
dc.subjectNANOSIZED LI4TI5O12-
dc.subjectNEGATIVE ELECTRODE-
dc.subjectRATE-CAPABILITY-
dc.subjectPYROLYSIS-
dc.titleSynthesis of Li4Ti5O12/carbon nanocomposites in supercritical methanol for anode in Li-ion batteries: Effect of surface modifiers-
dc.typeArticle-
dc.identifier.doi10.1016/j.supflu.2015.03.001-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF SUPERCRITICAL FLUIDS, v.101, pp.72 - 80-
dc.citation.titleJOURNAL OF SUPERCRITICAL FLUIDS-
dc.citation.volume101-
dc.citation.startPage72-
dc.citation.endPage80-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000354581800008-
dc.identifier.scopusid2-s2.0-84925660744-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-COATED LI4TI5O12-
dc.subject.keywordPlusRATE ELECTRODE MATERIAL-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusOXIDE NANOPARTICLES-
dc.subject.keywordPlusNANOSIZED LI4TI5O12-
dc.subject.keywordPlusNEGATIVE ELECTRODE-
dc.subject.keywordPlusRATE-CAPABILITY-
dc.subject.keywordPlusPYROLYSIS-
dc.subject.keywordAuthorLithium titanium oxide-
dc.subject.keywordAuthorSupercritical methanol-
dc.subject.keywordAuthorSurface-modification-
dc.subject.keywordAuthorCarbon coating-
dc.subject.keywordAuthorLithium secondary batteries-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE