Full metadata record

DC Field Value Language
dc.contributor.authorDu Hoang Long-
dc.contributor.authorJeong, Min-Gi-
dc.contributor.authorLee, Yoon-Sung-
dc.contributor.authorChoi, Wonchang-
dc.contributor.authorLee, Joong Kee-
dc.contributor.authorOh, In-Hwan-
dc.contributor.authorJung, Hun-Gi-
dc.date.accessioned2024-01-20T07:02:35Z-
dc.date.available2024-01-20T07:02:35Z-
dc.date.created2021-09-05-
dc.date.issued2015-05-20-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125431-
dc.description.abstractNitrogen-doped carbon is coated on lithium titanate (Li4Ti5O12, LTO) via a simple chemical refluxing process, using ethylenediamine (EDA) as the carbon and nitrogen source. The process incorporates a carbon coating doped with a relatively high amount of nitrogen to form a conducting network on the LTO matrix. The introduction of N dopants in the carbon matrix leads to a higher density of C vacancies, resulting in improved lithium-ion diffusion. The uniform coating of nitrogen-doped carbon on Li4Ti5O12 (CN-LTO) enhances the electronic conductivity of a CN-LTO electrode and the corresponding electrochemical properties of the cell employing the electrode. The results of our study demonstrate that the CN-LTO anode exhibits higher rate capability and cycling performance over 100 cycles. From the electrochemical tests performed, the specific capacity of CN-LTO electrode at higher rates of 20 and 50 C are found to be 140.7 and 82.3 mAh g(-1)., respectively. In addition, the CN-Li4Ti5O12 anode attained higher capacity retention of 100% at 1 C rate after 100 cycles and 92.9% at 10 C rate after 300 cycles.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectTITANIUM NITRIDE-
dc.subjectCOATED LI4TI5O12-
dc.subjectFACILE SYNTHESIS-
dc.subjectANODE MATERIAL-
dc.subjectSPINEL-
dc.subjectCHEMISTRY-
dc.subjectELECTRODE-
dc.subjectSURFACE-
dc.titleCoating Lithium Titanate with Nitrogen-Doped Carbon by Simple Refluxing for High-Power Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5b00776-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.7, no.19, pp.10250 - 10257-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume7-
dc.citation.number19-
dc.citation.startPage10250-
dc.citation.endPage10257-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000355055000021-
dc.identifier.scopusid2-s2.0-84930197857-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusTITANIUM NITRIDE-
dc.subject.keywordPlusCOATED LI4TI5O12-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusSPINEL-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorlithium titanate-
dc.subject.keywordAuthornitrogen-doped carbon coating-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorlithium ion battery-
dc.subject.keywordAuthorhigh power density-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE