Full metadata record

DC Field Value Language
dc.contributor.authorMueller, Michael-
dc.contributor.authorBaik, Seungyun-
dc.contributor.authorJeon, Hojeong-
dc.contributor.authorKim, Yuchan-
dc.contributor.authorKim, Jungtae-
dc.contributor.authorKim, Young Jun-
dc.date.accessioned2024-01-20T07:02:42Z-
dc.date.available2024-01-20T07:02:42Z-
dc.date.created2021-09-05-
dc.date.issued2015-05-15-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125438-
dc.description.abstractThe growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V2O5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation(QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between awild-type phage (wt-phage) and vanadium cations in the V2O5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage(re-phage) in V2O5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/VxOx composites showed significantly enhanced photodegradation activities compared with the synthesized-wt-phage-V2O5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing aid, such as the two cysteine-constrained peptides on the phage surface, and has potential for use in nanotechnology applications. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectMINERALIZATION-
dc.subjectAGGREGATION-
dc.subjectCATALYSIS-
dc.subjectPEPTIDES-
dc.titleDirected synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2015.02.029-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.337, pp.12 - 18-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume337-
dc.citation.startPage12-
dc.citation.endPage18-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000351621000003-
dc.identifier.scopusid2-s2.0-84925351357-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMINERALIZATION-
dc.subject.keywordPlusAGGREGATION-
dc.subject.keywordPlusCATALYSIS-
dc.subject.keywordPlusPEPTIDES-
dc.subject.keywordAuthorFilamentous phage-
dc.subject.keywordAuthorVanadium oxides-
dc.subject.keywordAuthorNanocomposites-
dc.subject.keywordAuthorPhotodegradation-
dc.subject.keywordAuthorNanoelectronicsa-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE