Full metadata record

DC Field Value Language
dc.contributor.authorLim, Hyungkwang-
dc.contributor.authorKornijcuk, Vladimir-
dc.contributor.authorSeok, Jun Yeong-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorKim, Inho-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorJeong, Doo Seok-
dc.date.accessioned2024-01-20T07:02:55Z-
dc.date.available2024-01-20T07:02:55Z-
dc.date.created2021-09-04-
dc.date.issued2015-05-13-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125449-
dc.description.abstractWe conducted simulations on the neuronal behavior of neuristor-based leaky integrate-and-fire (NLIF) neurons. The phase-plane analysis on the NLIF neuron highlights its spiking dynamics determined by two nullclines conditional on the variables on the plane. Particular emphasis was placed on the operational noise arising from the variability of the threshold switching behavior in the neuron on each switching event. As a consequence, we found that the NLIF neuron exhibits a Poisson-like noise in spiking, delimiting the reliability of the information conveyed by individual NLIF neurons. To highlight neuronal information coding at a higher level, a population of noisy NLIF neurons was analyzed in regard to probability of successful information decoding given the Poisson-like noise of each neuron. The result demonstrates highly probable success in decoding in spite of large variability - due to the variability of the threshold switching behavior - of individual neurons.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectSYNAPTIC NOISE-
dc.subjectSPIKING-
dc.subjectDEVICE-
dc.subjectINFERENCE-
dc.subjectSYNAPSES-
dc.subjectSYSTEM-
dc.subjectBRAIN-
dc.titleReliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study-
dc.typeArticle-
dc.identifier.doi10.1038/srep09776-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.5-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume5-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000355214700001-
dc.identifier.scopusid2-s2.0-84929376918-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSYNAPTIC NOISE-
dc.subject.keywordPlusSPIKING-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordPlusINFERENCE-
dc.subject.keywordPlusSYNAPSES-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusBRAIN-
dc.subject.keywordAuthorartificial neurons-
dc.subject.keywordAuthorspiking neural network-
dc.subject.keywordAuthorneuristor-based leaky integrate and fire neurons-
dc.subject.keywordAuthorbayesian statistics-
dc.subject.keywordAuthorpopulation representation-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE