Full metadata record

DC Field Value Language
dc.contributor.authorHalim, Martin-
dc.contributor.authorKim, Jung Sub-
dc.contributor.authorChoi, Jeong-Gil-
dc.contributor.authorLee, Joong Kee-
dc.date.accessioned2024-01-20T07:04:52Z-
dc.date.available2024-01-20T07:04:52Z-
dc.date.created2021-09-04-
dc.date.issued2015-04-15-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125549-
dc.description.abstractNanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores. (C) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectLONG CYCLE LIFE-
dc.subjectNANOSTRUCTURED SILICON-
dc.subjectRECHARGEABLE BATTERIES-
dc.subjectHIGH-CAPACITY-
dc.subjectELECTRODES-
dc.subjectLITHIATION-
dc.subjectMECHANISM-
dc.subjectSURFACE-
dc.subjectEXTRACTION-
dc.subjectMICROSCOPY-
dc.titleElectrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2014.08.085-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.334, pp.115 - 122-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume334-
dc.citation.startPage115-
dc.citation.endPage122-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000351609900020-
dc.identifier.scopusid2-s2.0-84925604226-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusLONG CYCLE LIFE-
dc.subject.keywordPlusNANOSTRUCTURED SILICON-
dc.subject.keywordPlusRECHARGEABLE BATTERIES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusEXTRACTION-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordAuthorBundle-type silicon nanorods (BSNR)-
dc.subject.keywordAuthorIn-situ dilatometer-
dc.subject.keywordAuthorMetal-assisted chemical etching-
dc.subject.keywordAuthorNanostructured silicon-
dc.subject.keywordAuthorSelf relaxant-
dc.subject.keywordAuthorVolume expansion-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE