Density Functional Theory Study of Silolodithiophene Thiophenepyrrolopyrroledione-based Small Molecules: The Effect of Alkyl Side Chain Length in Electron Donor Materials

Authors
Seo, DongkyunYoon, YoungwoonYeo, Hak MinLee, Kyung-KooKim, BongSooKwak, Kyungwon
Issue Date
2015-02
Publisher
WILEY-V C H VERLAG GMBH
Citation
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, v.36, no.2, pp.513 - 519
Abstract
Push-pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b: 4,5-b']-dithiophene-2,6-diyl)bis(thiophene- 5,2-diyl)) bis(2,5-alkyl-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, pi-delocalized backbone structure, and UV-Vis absorption spectrum when they are placed at the least steric effect positions.
Keywords
HETEROJUNCTION SOLAR-CELLS; ENERGY-LEVEL MODULATION; BAND-GAP; PHOTOPHYSICAL PROPERTIES; CONJUGATED POLYMERS; STRUCTURAL ORDER; EFFICIENCY; DESIGN; PERFORMANCE; SEPARATION; Organic solar cell; Alkyl side chain effect; Density functional theory
ISSN
0253-2964
URI
https://pubs.kist.re.kr/handle/201004/125785
DOI
10.1002/bkcs.10096
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE