Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koh, K. | - |
dc.contributor.author | Seo, J. -E. | - |
dc.contributor.author | Lee, J. H. | - |
dc.contributor.author | Goswami, A. | - |
dc.contributor.author | Yoon, C. W. | - |
dc.contributor.author | Asefa, T. | - |
dc.date.accessioned | 2024-01-20T08:04:41Z | - |
dc.date.available | 2024-01-20T08:04:41Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2014-12 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/126037 | - |
dc.description.abstract | The success of the so-called "hydrogen economy" for large-scale applications will ultimately depend on efficient and sustainable production, storage and distribution of hydrogen. Owing to its low toxicity, high volumetric H-2 storage capacity and availability both from renewable resources (e.g., biomass) and non-renewable resources (e.g., fossil fuel feedstocks), formic acid is one of the most favorable chemical hydrogen storage media for large-scale energy storage applications. However, for FA to become a viable hydrogen storage medium, efficient catalysts that enable it to release H-2 at low cost are necessary. Herein we report a facile synthetic route to amine-functionalized nanoporous silica-supported ultrasmall Pd nanoparticles (SBA-15-Amine/Pd) that are highly active catalysts for formic acid dehydrogenation, producing hydrogen at ambient temperature with a high turn-over-frequency (TOF) of 293 h(-1), which is among the highest TOFs ever reported for the reaction by a heterogeneous catalyst. We also show that the material is easily recyclable multiple times, without losing its catalytic activity. So, the catalyst we developed can be expected to be part of the solutions of our sustainability challenges. | - |
dc.language | English | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.subject | ROOM-TEMPERATURE | - |
dc.subject | PD | - |
dc.subject | GENERATION | - |
dc.subject | SILICA | - |
dc.subject | DEHYDROGENATION | - |
dc.subject | DECOMPOSITION | - |
dc.subject | OXIDATION | - |
dc.subject | WATER | - |
dc.title | Ultrasmall palladium nanoparticles supported on amine-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/c4ta04538f | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF MATERIALS CHEMISTRY A, v.2, no.48, pp.20444 - 20449 | - |
dc.citation.title | JOURNAL OF MATERIALS CHEMISTRY A | - |
dc.citation.volume | 2 | - |
dc.citation.number | 48 | - |
dc.citation.startPage | 20444 | - |
dc.citation.endPage | 20449 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000345531200002 | - |
dc.identifier.scopusid | 2-s2.0-84911923255 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ROOM-TEMPERATURE | - |
dc.subject.keywordPlus | PD | - |
dc.subject.keywordPlus | GENERATION | - |
dc.subject.keywordPlus | SILICA | - |
dc.subject.keywordPlus | DEHYDROGENATION | - |
dc.subject.keywordPlus | DECOMPOSITION | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | WATER | - |
dc.subject.keywordAuthor | Formic acid | - |
dc.subject.keywordAuthor | hydrogen storage | - |
dc.subject.keywordAuthor | dehydrogenation | - |
dc.subject.keywordAuthor | ultrasmall Pd nanoparticle | - |
dc.subject.keywordAuthor | Pd/SBA-15 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.