Full metadata record

DC Field Value Language
dc.contributor.authorHwang, Jongkook-
dc.contributor.authorJo, Changshin-
dc.contributor.authorHur, Kahyun-
dc.contributor.authorLim, Jun-
dc.contributor.authorKim, Seongseop-
dc.contributor.authorLee, Jinwoo-
dc.date.accessioned2024-01-20T08:31:35Z-
dc.date.available2024-01-20T08:31:35Z-
dc.date.created2021-09-02-
dc.date.issued2014-11-12-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126120-
dc.description.abstractHierarchically porous oxide materials have immense potential for applications in catalysis, separation, and energy devices, but the synthesis of these materials is hampered by the need to use multiple templates and the associated complicated steps and uncontrollable mixing behavior. Here we report a simple one-pot strategy for the synthesis of inorganic oxide materials with multiscale porosity. The inorganic precursor and block copolymer are coassembled into an ordered mesostructure (microphase separation), while the in situ-polymerized organic precursor forms organic-rich macrodomains (macrophase separation) around which the mesostructure grows. Calcination generates hierarchical meso/macroporous SiO2 and TiO2 with three-dimensionally interconnected pore networks. The continuous 3D macrostructures were clearly visualized by nanoscale X-ray computed tomography. The resulting TiO2 was used as the anode in a lithium ion battery and showed excellent rate capability compared with mesoporous TiO2. This work is of particular importance because it (i) expands the base of BCP self-assembly from mesostructures to complex porous structures, (ii) shows that the interplay of micro- and macrophase separation can be fully exploited for the design of hierarchically porous inorganic materials, and therefore (iii) provides strategies for researchers in materials science and polymer science.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectONE-POT SYNTHESIS-
dc.subjectSPINODAL DECOMPOSITION-
dc.subjectPHASE-SEPARATION-
dc.subjectSILICA-
dc.subjectCOPOLYMER-
dc.subjectNANOCOMPOSITES-
dc.subjectCARBON/SILICA-
dc.subjectMESOSTRUCTURE-
dc.subjectHOMOPOLYMER-
dc.subjectDESIGN-
dc.titleDirect Access to Hierarchically Porous Inorganic Oxide Materials with Three-Dimensionally Interconnected Networks-
dc.typeArticle-
dc.identifier.doi10.1021/ja5091172-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.136, no.45, pp.16066 - 16072-
dc.citation.titleJOURNAL OF THE AMERICAN CHEMICAL SOCIETY-
dc.citation.volume136-
dc.citation.number45-
dc.citation.startPage16066-
dc.citation.endPage16072-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000344906100046-
dc.identifier.scopusid2-s2.0-84910019766-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusONE-POT SYNTHESIS-
dc.subject.keywordPlusSPINODAL DECOMPOSITION-
dc.subject.keywordPlusPHASE-SEPARATION-
dc.subject.keywordPlusSILICA-
dc.subject.keywordPlusCOPOLYMER-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusCARBON/SILICA-
dc.subject.keywordPlusMESOSTRUCTURE-
dc.subject.keywordPlusHOMOPOLYMER-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorBlock Copolymer Self-Assembly-
dc.subject.keywordAuthorHierarchical Structure-
dc.subject.keywordAuthorNetwork Structure-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE