Full metadata record

DC Field Value Language
dc.contributor.authorPatil, Umakant M.-
dc.contributor.authorNam, Min Sik-
dc.contributor.authorSohn, Ji Soo-
dc.contributor.authorKulkarni, Sachin B.-
dc.contributor.authorShin, Ryung-
dc.contributor.authorKang, Shinill-
dc.contributor.authorLee, Seok-
dc.contributor.authorKim, Jae Hun-
dc.contributor.authorJun, Seong Chan-
dc.date.accessioned2024-01-20T08:32:31Z-
dc.date.available2024-01-20T08:32:31Z-
dc.date.created2021-09-05-
dc.date.issued2014-11-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126167-
dc.description.abstractThe present research describes successful enchase of Co(OH)(2) microflakes by the potentiodynamic mode of electro-deposition (PED) on porous, light weight, conducting 3D multilayered graphene foam (MGF) and their synergistic effect on improving the supercapacitive performance. Structural and morphological analyses reveal uniform growth of Co(OH) 2 microflakes with an average flake width of similar to 30 nm on the MGF surface. Moreover, electrochemical capacitive measurements of the Co(OH) 2/MGF electrode exhibit a high specific capacitance of similar to 1030 F g(-1) with similar to 37 W h kg(-1) energy and similar to 18 kW kg(-1) power density at 9.09 A g(-1) current density. The superior pseudoelectrochemical properties of cobalt hydroxide are synergistically decorated with high surface area offered by a conducting, porous 3D graphene framework, which stimulates the effective utilization of redox characteristics and mutually improves electrochemical capacitive performance with charge transport and storage. This work evokes scalable electrochemical synthesis with the enhanced supercapacitive performance of the Co(OH)(2)/MGF electrode in energy storage devices.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectCOBALT HYDROXIDE-
dc.subjectELECTRODE-
dc.subjectMETAL-
dc.subjectCOMPOSITES-
dc.subjectNANORODS-
dc.subjectARRAYS-
dc.subjectFILMS-
dc.titleControlled electrochemical growth of Co(OH)(2) flakes on 3D multilayered graphene foam for high performance supercapacitors-
dc.typeArticle-
dc.identifier.doi10.1039/c4ta03953j-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.2, no.44, pp.19075 - 19083-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume2-
dc.citation.number44-
dc.citation.startPage19075-
dc.citation.endPage19083-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000344382800047-
dc.identifier.scopusid2-s2.0-84908148377-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOBALT HYDROXIDE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorsupercapacitor-
dc.subject.keywordAuthor3D multilayered graphene foam-
dc.subject.keywordAuthorhybrid graphene-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE