Full metadata record

DC Field Value Language
dc.contributor.authorZhou, Xiangtong-
dc.contributor.authorQu, Youpeng-
dc.contributor.authorKim, Byung Hong-
dc.contributor.authorChoo, Pamela Yengfung-
dc.contributor.authorLiu, Jia-
dc.contributor.authorDu, Yue-
dc.contributor.authorHe, Weihua-
dc.contributor.authorChang, In Seop-
dc.contributor.authorRen, Nanqi-
dc.contributor.authorFeng, Yujie-
dc.date.accessioned2024-01-20T08:34:25Z-
dc.date.available2024-01-20T08:34:25Z-
dc.date.created2022-01-25-
dc.date.issued2014-10-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126264-
dc.description.abstractThe effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5 mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2 mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink. (C) 2014 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleEffects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2014.07.012-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIORESOURCE TECHNOLOGY, v.169, pp.265 - 270-
dc.citation.titleBIORESOURCE TECHNOLOGY-
dc.citation.volume169-
dc.citation.startPage265-
dc.citation.endPage270-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000340894400036-
dc.identifier.scopusid2-s2.0-84904762042-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRICITY-GENERATION-
dc.subject.keywordPlusNITROGENASE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusTOXICITY-
dc.subject.keywordPlusMICROORGANISMS-
dc.subject.keywordPlusINHIBITION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSENSOR-
dc.subject.keywordPlusMODE-
dc.subject.keywordAuthorAzide-
dc.subject.keywordAuthorCoulomb efficiency-
dc.subject.keywordAuthorAzide reduction-
dc.subject.keywordAuthorPower overshoot-
dc.subject.keywordAuthorElectron acceptor-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE