Full metadata record

DC Field Value Language
dc.contributor.authorKim, Inho-
dc.contributor.authorFleetham, Tyler-
dc.contributor.authorChoi, Hyung-Woo-
dc.contributor.authorChoi, Jea-Young-
dc.contributor.authorLee, Taek Sung-
dc.contributor.authorJeong, Doo Seok-
dc.contributor.authorLee, Wook Seong-
dc.contributor.authorLee, Kyeong Seok-
dc.contributor.authorLee, Yong-Kyun-
dc.contributor.authorAlford, Terry L.-
dc.contributor.authorLi, Jian-
dc.date.accessioned2024-01-20T09:00:44Z-
dc.date.available2024-01-20T09:00:44Z-
dc.date.created2021-09-02-
dc.date.issued2014-10-
dc.identifier.issn1566-1199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126325-
dc.description.abstractWe demonstrate the power conversion efficiency of bulk heterojunction organic solar cells can be enhanced by introducing Ag nanoparticles into organic exciton blocking layer. The Ag nanoparticles were incorporated into the exciton blocking layer by thermal evaporation. Compared with the conventional cathode contact materials such as Al, LiF/Al, devices with Ag nanoparticles incorporated in the exciton blocking layer showed lower series resistances and higher fill factors, leading to a 3.2% power conversion efficiency with a 60 nm active layer; whereas, the conventional devices have only 2.0-2.3% power conversion efficiency. Localized surface plasmon resonances by the Ag nanoparticles and their contribution to photocurrent were also discussed by simulating optical absorptions using a FDTD (finite-difference-time-domain) method. (C) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectELECTRON-TRANSPORT-
dc.subjectPERFORMANCE-
dc.subjectCATHODE-
dc.titleEnhanced power conversion efficiency of organic solar cells by embedding Ag nanoparticles in exciton blocking layer-
dc.typeArticle-
dc.identifier.doi10.1016/j.orgel.2014.06.020-
dc.description.journalClass1-
dc.identifier.bibliographicCitationORGANIC ELECTRONICS, v.15, no.10, pp.2414 - 2419-
dc.citation.titleORGANIC ELECTRONICS-
dc.citation.volume15-
dc.citation.number10-
dc.citation.startPage2414-
dc.citation.endPage2419-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000341290000034-
dc.identifier.scopusid2-s2.0-84905179977-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRON-TRANSPORT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordAuthorOrganic solar cells-
dc.subject.keywordAuthorExciton blocking layer-
dc.subject.keywordAuthorSurface plasmon resonance-
dc.subject.keywordAuthorAg nanoparticle-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE