Full metadata record

DC Field Value Language
dc.contributor.authorChae, Sang Youn-
dc.contributor.authorJung, Hyejin-
dc.contributor.authorJeon, Hyo Sang-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorJoo, Oh-Shim-
dc.date.accessioned2024-01-20T09:05:03Z-
dc.date.available2024-01-20T09:05:03Z-
dc.date.created2021-09-05-
dc.date.issued2014-08-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126548-
dc.description.abstractIn a dual bandgap system such as WO3/BiVO4, the morphology of each component should be controlled by understanding its properties, in particular with respect to the charge flow in the system. For WO3/BiVO4 photoanodes, a porous BiVO4 film allows contact of an electrolyte to the bottom layer with enhanced surface area, thereby promoting the oxidation reaction, while one-dimensional (1-D) WO3 nanorods, directly grown on F-doped tin oxide, are advantageous for transporting electrons to the back contact. The morphology of the BiVO4 film covered by 1-D WO3 nanorods varies with the addition of organic additives such as ethylcellulose in the metal precursor solution. The cross-sectional images from scanning electron microscopy show that 1-D WO3 nanorods is coated with the BiVO4 layer, which forms a porous top layer that can effectively absorb visible light and enhance charge transfer resulting in enhanced photocurrents. We report on the highest photocurrent at a potential of 1.23 V versus a reversible hydrogen electrode (RHE) by means of a 1-D WO3/BiVO4/Co-Pi photoanode. The strategies for constructing such kind of heterojunctions are well applicable to other dual bandgap photoanodes.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectPHOTOELECTROCHEMICAL CELLS-
dc.subjectCHARGE SEPARATION-
dc.subjectOXIDATION-
dc.subjectBIVO4-
dc.subjectPHOTOOXIDATION-
dc.subjectPROGRESS-
dc.titleMorphology control of one-dimensional heterojunctions for highly efficient photoanodes used for solar water splitting-
dc.typeArticle-
dc.identifier.doi10.1039/c4ta00702f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.2, no.29, pp.11408 - 11416-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume2-
dc.citation.number29-
dc.citation.startPage11408-
dc.citation.endPage11416-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000339004100049-
dc.identifier.scopusid2-s2.0-84903719786-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOELECTROCHEMICAL CELLS-
dc.subject.keywordPlusCHARGE SEPARATION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusBIVO4-
dc.subject.keywordPlusPHOTOOXIDATION-
dc.subject.keywordPlusPROGRESS-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE