Full metadata record

DC Field Value Language
dc.contributor.authorLim, Ji Yeon-
dc.contributor.authorRahman, Gul-
dc.contributor.authorChae, Sang Youn-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorKim, Chang-Soo-
dc.contributor.authorJoo, Oh-Shim-
dc.date.accessioned2024-01-20T09:33:07Z-
dc.date.available2024-01-20T09:33:07Z-
dc.date.created2021-09-05-
dc.date.issued2014-06-
dc.identifier.issn0363-907X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126695-
dc.description.abstractThis work explores the opportunity to reduce the cost and enhance the stability of RuO2 as an oxygen evolution reaction catalyst by coating RuO2 on chemically stable SnO2 support. Nano-sized RuO2/SnO2 composites of different mass ratios of RuO2 to SnO2 (0.45:1, 0.67:1, and 1.07:1) were synthesized using solution-based hydrothermal method. The physicochemical properties of the RuO2/SnO2 were studied by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and N-2 adsorption-desorption isotherms. The electrochemical activity of RuO2/SnO2 as anode electrocatalyst was investigated in a proton exchange membrane (PEM) water electrolysis cell of Pt/C cathode and Nafion membrane. Experimental results showed that RuO2/SnO2 of ratio (1.07:1) exhibit higher electrochemical activity compared to pure RuO2, resulting -50% reduction of noble metal content. The extended life test of electrocatalysts for 240 h implied that RuO2/SnO2 (1.07:1) significantly improved the stability of electrode in comparison to pure RuO2 in oxygen evolution processes. Copyright (c) 2013 John Wiley & Sons, Ltd.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleHighly stable RuO2/SnO2 nanocomposites as anode electrocatalysts in a PEM water electrolysis cell-
dc.typeArticle-
dc.identifier.doi10.1002/er.3081-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Energy Research, v.38, no.7, pp.875 - 883-
dc.citation.titleInternational Journal of Energy Research-
dc.citation.volume38-
dc.citation.number7-
dc.citation.startPage875-
dc.citation.endPage883-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000335549300004-
dc.identifier.scopusid2-s2.0-84899964518-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNuclear Science & Technology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaNuclear Science & Technology-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusHYDROGEN ECONOMY-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSUPPORT-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusSNO2-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorstability-
dc.subject.keywordAuthorhydrogen generation-
dc.subject.keywordAuthoranode electrocatalysts-
dc.subject.keywordAuthornanocomposites-
dc.subject.keywordAuthorPEM water electrolysisp-
dc.subject.keywordAuthortin oxide-
dc.subject.keywordAuthorruthenium oxide-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE