Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jihye-
dc.contributor.authorKim, Seon Hee-
dc.contributor.authorLee, Kang-Bong-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorLee, Yeonhee-
dc.date.accessioned2024-01-20T09:33:43Z-
dc.date.available2024-01-20T09:33:43Z-
dc.date.created2021-09-05-
dc.date.issued2014-06-
dc.identifier.issn0947-8396-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126726-
dc.description.abstractThe chalcopyrite semiconductor, Cu(InGa)Se-2 (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs+ (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs+ ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs+ ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs+ ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs+-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs+ distribution for the CIGS thin films.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleImproved quantitative analysis of Cu(In,Ga)Se-2 thin films using MCs+-SIMS depth profiling-
dc.typeArticle-
dc.identifier.doi10.1007/s00339-013-8009-4-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, v.115, no.4, pp.1355 - 1364-
dc.citation.titleAPPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING-
dc.citation.volume115-
dc.citation.number4-
dc.citation.startPage1355-
dc.citation.endPage1364-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000336362900034-
dc.identifier.scopusid2-s2.0-84901633973-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusION MASS-SPECTROMETRY-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusMOLECULAR-IONS-
dc.subject.keywordPlusICP-OES-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSELENIDES-
dc.subject.keywordPlusROUGHNESS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusSURFACE-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE