Full metadata record

DC Field Value Language
dc.contributor.authorLi, Cheng-
dc.contributor.authorCredgington, Dan-
dc.contributor.authorKo, Doo-Hyun-
dc.contributor.authorRong, Zhuxia-
dc.contributor.authorWang, Jianpu-
dc.contributor.authorGreenham, Neil C.-
dc.date.accessioned2024-01-20T09:34:33Z-
dc.date.available2024-01-20T09:34:33Z-
dc.date.created2021-08-31-
dc.date.issued2014-06-
dc.identifier.issn1463-9076-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126771-
dc.description.abstractThe performance of organic solar cells incorporating solution-processed titanium suboxide ( TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectOPEN-CIRCUIT VOLTAGE-
dc.subjectLIGHT-EMITTING-DIODES-
dc.subjectPOLYMER PHOTOVOLTAIC CELLS-
dc.subjectENERGY-LEVEL ALIGNMENT-
dc.subjectTITANIUM SUBOXIDE-
dc.subjectFIELD-
dc.subjectRECOMBINATION-
dc.subjectELECTROABSORPTION-
dc.subjectSPECTROSCOPY-
dc.subjectDEPENDENCE-
dc.titleBuilt-in potential shift and Schottky-barrier narrowing in organic solar cells with UV-sensitive electron transport layers-
dc.typeArticle-
dc.identifier.doi10.1039/c4cp01251h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.16, no.24, pp.12131 - 12136-
dc.citation.titlePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.volume16-
dc.citation.number24-
dc.citation.startPage12131-
dc.citation.endPage12136-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000337122000030-
dc.identifier.scopusid2-s2.0-84901745109-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOPEN-CIRCUIT VOLTAGE-
dc.subject.keywordPlusLIGHT-EMITTING-DIODES-
dc.subject.keywordPlusPOLYMER PHOTOVOLTAIC CELLS-
dc.subject.keywordPlusENERGY-LEVEL ALIGNMENT-
dc.subject.keywordPlusTITANIUM SUBOXIDE-
dc.subject.keywordPlusFIELD-
dc.subject.keywordPlusRECOMBINATION-
dc.subject.keywordPlusELECTROABSORPTION-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusDEPENDENCE-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE