Full metadata record

DC Field Value Language
dc.contributor.authorSong, Taeseup-
dc.contributor.authorHan, Hyungkyu-
dc.contributor.authorChoi, Heechae-
dc.contributor.authorLee, Jung Woo-
dc.contributor.authorPark, Hyunjung-
dc.contributor.authorLee, Sangkyu-
dc.contributor.authorPark, Won Il-
dc.contributor.authorKim, Seungchul-
dc.contributor.authorLiu, Li-
dc.contributor.authorPaik, Ungyu-
dc.date.accessioned2024-01-20T10:02:56Z-
dc.date.available2024-01-20T10:02:56Z-
dc.date.created2021-09-05-
dc.date.issued2014-04-
dc.identifier.issn1998-0124-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126938-
dc.description.abstractThe inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithium ion batteries. In this study, we report on high-density TiO2 nanotubes (NTs) branched onto a carbon nanofiber (CNF) "tree" that provide a low resistance current path between the current collector and the TiO2 NTs. Compared to a TiO2 NT array grown directly on the current collector, the branched TiO2 NTs tree, coupled with the CNF electrode, exhibited similar to 10 times higher areal energy density and excellent rate capability (discharge capacity of similar to 150 mA.h.g(-1) at a current density of 1,000 mA.g(-1)). Based on the detailed experimental results and associated theoretical analysis, we demonstrate that the introduction of CNFs with direct electric contact with the current collector enables a significant increase in areal capacity (mA.h.cm(-2)) as well as excellent rate capability.-
dc.languageEnglish-
dc.publisherTSINGHUA UNIV PRESS-
dc.subjectANATASE TITANIUM-DIOXIDE-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectSTORAGE-
dc.subjectOXIDE-
dc.subjectELECTRODE-
dc.subjectINTERCALATION-
dc.subjectPERFORMANCE-
dc.subjectEFFICIENT-
dc.subjectINSERTION-
dc.subjectCAPACITY-
dc.titleTiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries-
dc.typeArticle-
dc.identifier.doi10.1007/s12274-014-0415-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO RESEARCH, v.7, no.4, pp.491 - 501-
dc.citation.titleNANO RESEARCH-
dc.citation.volume7-
dc.citation.number4-
dc.citation.startPage491-
dc.citation.endPage501-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000339891100005-
dc.identifier.scopusid2-s2.0-84899949851-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusANATASE TITANIUM-DIOXIDE-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordAuthortitanium dioxide-
dc.subject.keywordAuthorcarbon nanofibers-
dc.subject.keywordAuthorareal capacity-
dc.subject.keywordAuthorlithium ion batteries-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE