Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyoungchul-
dc.contributor.authorKim, Moo Hwan-
dc.contributor.authorKaviany, Massoud-
dc.date.accessioned2024-01-20T10:03:47Z-
dc.date.available2024-01-20T10:03:47Z-
dc.date.created2021-09-04-
dc.date.issued2014-03-28-
dc.identifier.issn0021-8979-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126981-
dc.description.abstractWe applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000 K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500 K. (C) 2014 AIP Publishing LLC.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectURANIUM-DIOXIDE-
dc.subjectELECTRICAL-CONDUCTIVITY-
dc.subjectTHERMODYNAMIC PROPERTIES-
dc.subjectSINGLE-CRYSTAL-
dc.subjectIRRADIATED UO2-
dc.subject1ST PRINCIPLES-
dc.subjectHEAT-CAPACITY-
dc.subjectSIMULATIONS-
dc.subjectOXIDES-
dc.subjectDECOMPOSITION-
dc.titleLattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics-
dc.typeArticle-
dc.identifier.doi10.1063/1.4869669-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF APPLIED PHYSICS, v.115, no.12-
dc.citation.titleJOURNAL OF APPLIED PHYSICS-
dc.citation.volume115-
dc.citation.number12-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000333901100019-
dc.identifier.scopusid2-s2.0-84898039308-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusURANIUM-DIOXIDE-
dc.subject.keywordPlusELECTRICAL-CONDUCTIVITY-
dc.subject.keywordPlusTHERMODYNAMIC PROPERTIES-
dc.subject.keywordPlusSINGLE-CRYSTAL-
dc.subject.keywordPlusIRRADIATED UO2-
dc.subject.keywordPlus1ST PRINCIPLES-
dc.subject.keywordPlusHEAT-CAPACITY-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordAuthorUranium dioxide-
dc.subject.keywordAuthorThermal conductivity-
dc.subject.keywordAuthorMolecular dynamics-
dc.subject.keywordAuthorDensity-functional theory-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE