Full metadata record

DC Field Value Language
dc.contributor.authorNoh, Ho-Sung-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorKim, Byung-Kook-
dc.contributor.authorJe, Hae-June-
dc.contributor.authorLee, Hae-Weon-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorSon, Ji-Won-
dc.date.accessioned2024-01-20T10:04:28Z-
dc.date.available2024-01-20T10:04:28Z-
dc.date.created2021-09-05-
dc.date.issued2014-03-01-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127015-
dc.description.abstractThe thermo-mechanical stability of a thin-film and nanostructure-based SOFC (TF-SOFC) is assessed by thermal cycling tests. An ultrathin bi-layer electrolyte composed of 150-nm-thick yttria-stabilized zirconia (YSZ) and 450-nm-thick gadolinia-doped ceria (GDC) is successfully built on a NiO-YSZ anode support the microstructure scale of which changes from gm to nm (multi-scale architecture). The concept of multi-scale architecture in the TF-SOFC not only enables the reliable implementation of thin-film electrolytes and nanostructured electrodes to improve the critical low-temperature performance of the SOFC but also secures the thermo-mechanical stability of TF-SOFC. Competent cell performance is obtained, including a peak power density about 1.4 W cm(-2) at 600 degrees C. The TF-SOFC survives 50 thermal cycle tests between 600 and 400 degrees C over 124 h without suffering a drastic failure. Although some cell output degradation is observed after the thermal cycling tests, the cell sustains a peak power density over 1 W cm(-2) at 600 degrees C, which indicates the superior thermo-mechanical stability of the multi-scale-architectured TF-SOFC. (C) 2013 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPULSED-LASER DEPOSITION-
dc.subjectLA0.6SR0.4COO3-DELTA-CE0.9GD0.1O2-DELTA NANO-COMPOSITE-
dc.subjectZIRCONIA ELECTROLYTE-
dc.subjectPERFORMANCE-
dc.subjectSOFC-
dc.subjectMEMBRANES-
dc.subjectANODE-
dc.subjectFABRICATION-
dc.subjectCATHODES-
dc.titleThermo-mechanical stability of multi-scale-architectured thin-film-based solid oxide fuel cells assessed by thermal cycling tests-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2013.10.101-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.249, pp.125 - 130-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume249-
dc.citation.startPage125-
dc.citation.endPage130-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000330256300018-
dc.identifier.scopusid2-s2.0-84887883526-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPULSED-LASER DEPOSITION-
dc.subject.keywordPlusLA0.6SR0.4COO3-DELTA-CE0.9GD0.1O2-DELTA NANO-COMPOSITE-
dc.subject.keywordPlusZIRCONIA ELECTROLYTE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSOFC-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordAuthorSolid oxide fuel cell-
dc.subject.keywordAuthorThin-film electrolyte-
dc.subject.keywordAuthorNanostructured electrode-
dc.subject.keywordAuthorMulti-scale architecture-
dc.subject.keywordAuthorThermal cycle-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE