Full metadata record

DC Field Value Language
dc.contributor.authorJo, Jaeik-
dc.contributor.authorLee, Sung Joo-
dc.contributor.authorPark, Kang Ryoung-
dc.contributor.authorKim, Ig-Jae-
dc.contributor.authorKim, Jaihie-
dc.date.accessioned2024-01-20T10:04:55Z-
dc.date.available2024-01-20T10:04:55Z-
dc.date.created2021-09-05-
dc.date.issued2014-03-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127038-
dc.description.abstractAccurate classification of eye state is a prerequisite for preventing automobile accidents due to driver drowsiness. Previous methods of classification, based on features extracted for a single eye, are vulnerable to eye localization errors and visual obstructions, and most use a fixed threshold for classification, irrespective of variations in the driver's eye shape and texture. To address these deficiencies, we propose a new method for eye state classification that combines three innovations: (1) extraction and fusion of features from both eyes, (2) initialization of driver-specific thresholds to account for differences in eye shape and texture, and (3) modeling of driver-specific blinking patterns for normal (non-drowsy) driving. Experimental results show that the proposed method achieves significant improvements in detection accuracy. (C) 2013 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectFATIGUE DETECTION-
dc.subjectWARNING SYSTEM-
dc.titleDetecting driver drowsiness using feature-level fusion and user-specific classification-
dc.typeArticle-
dc.identifier.doi10.1016/j.eswa.2013.07.108-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEXPERT SYSTEMS WITH APPLICATIONS, v.41, no.4, pp.1139 - 1152-
dc.citation.titleEXPERT SYSTEMS WITH APPLICATIONS-
dc.citation.volume41-
dc.citation.number4-
dc.citation.startPage1139-
dc.citation.endPage1152-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000330158700020-
dc.identifier.scopusid2-s2.0-84888363097-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFATIGUE DETECTION-
dc.subject.keywordPlusWARNING SYSTEM-
dc.subject.keywordAuthorDrowsiness detection system-
dc.subject.keywordAuthorBlink detection-
dc.subject.keywordAuthorEye state classification-
dc.subject.keywordAuthorFeature-level fusion-
dc.subject.keywordAuthorUser-specific classification-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE