Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jo, Jaeik | - |
dc.contributor.author | Lee, Sung Joo | - |
dc.contributor.author | Park, Kang Ryoung | - |
dc.contributor.author | Kim, Ig-Jae | - |
dc.contributor.author | Kim, Jaihie | - |
dc.date.accessioned | 2024-01-20T10:04:55Z | - |
dc.date.available | 2024-01-20T10:04:55Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2014-03 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/127038 | - |
dc.description.abstract | Accurate classification of eye state is a prerequisite for preventing automobile accidents due to driver drowsiness. Previous methods of classification, based on features extracted for a single eye, are vulnerable to eye localization errors and visual obstructions, and most use a fixed threshold for classification, irrespective of variations in the driver's eye shape and texture. To address these deficiencies, we propose a new method for eye state classification that combines three innovations: (1) extraction and fusion of features from both eyes, (2) initialization of driver-specific thresholds to account for differences in eye shape and texture, and (3) modeling of driver-specific blinking patterns for normal (non-drowsy) driving. Experimental results show that the proposed method achieves significant improvements in detection accuracy. (C) 2013 Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.subject | FATIGUE DETECTION | - |
dc.subject | WARNING SYSTEM | - |
dc.title | Detecting driver drowsiness using feature-level fusion and user-specific classification | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.eswa.2013.07.108 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | EXPERT SYSTEMS WITH APPLICATIONS, v.41, no.4, pp.1139 - 1152 | - |
dc.citation.title | EXPERT SYSTEMS WITH APPLICATIONS | - |
dc.citation.volume | 41 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 1139 | - |
dc.citation.endPage | 1152 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000330158700020 | - |
dc.identifier.scopusid | 2-s2.0-84888363097 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Operations Research & Management Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | FATIGUE DETECTION | - |
dc.subject.keywordPlus | WARNING SYSTEM | - |
dc.subject.keywordAuthor | Drowsiness detection system | - |
dc.subject.keywordAuthor | Blink detection | - |
dc.subject.keywordAuthor | Eye state classification | - |
dc.subject.keywordAuthor | Feature-level fusion | - |
dc.subject.keywordAuthor | User-specific classification | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.