Full metadata record

DC Field Value Language
dc.contributor.authorVinegoni, Claudio-
dc.contributor.authorLee, Sungon-
dc.contributor.authorFumene Feruglio, Paolo-
dc.contributor.authorWeissleder, Ralph-
dc.date.accessioned2024-01-20T10:30:45Z-
dc.date.available2024-01-20T10:30:45Z-
dc.date.created2021-08-31-
dc.date.issued2014-03-
dc.identifier.issn1077-260X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127073-
dc.description.abstractIntravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the microdynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology, and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectMOUSE SPINAL-CORD-
dc.subjectIN-VIVO-
dc.subject2-PHOTON MICROSCOPY-
dc.subjectHIGH-SPEED-
dc.subjectFLUORESCENCE MICROSCOPY-
dc.subjectCHAMBER TECHNIQUE-
dc.subjectIMAGING WINDOW-
dc.subjectRESOLUTION-
dc.subjectMICE-
dc.subjectANIMALS-
dc.titleAdvanced Motion Compensation Methods for Intravital Optical Microscopy-
dc.typeArticle-
dc.identifier.doi10.1109/JSTQE.2013.2279314-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, v.20, no.2-
dc.citation.titleIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS-
dc.citation.volume20-
dc.citation.number2-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000329997200007-
dc.identifier.scopusid2-s2.0-84977648688-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryQuantum Science & Technology-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalResearchAreaOptics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOUSE SPINAL-CORD-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlus2-PHOTON MICROSCOPY-
dc.subject.keywordPlusHIGH-SPEED-
dc.subject.keywordPlusFLUORESCENCE MICROSCOPY-
dc.subject.keywordPlusCHAMBER TECHNIQUE-
dc.subject.keywordPlusIMAGING WINDOW-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusMICE-
dc.subject.keywordPlusANIMALS-
dc.subject.keywordAuthorIntravital microscopy-
dc.subject.keywordAuthorimage stabilization-
dc.subject.keywordAuthorin vivo imaging-
dc.subject.keywordAuthormotion artifact and motion compensation-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE