Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jun Won-
dc.contributor.authorGiraud-Carrier, Christophe-
dc.date.accessioned2024-01-20T10:31:40Z-
dc.date.available2024-01-20T10:31:40Z-
dc.date.created2022-01-25-
dc.date.issued2014-02-
dc.identifier.issn1088-467X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127118-
dc.description.abstractWe illustrate the danger of using default implementations of learning algorithms by showing that the implementation of RBF networks in the three most popular open source data mining software packages causes the algorithm to behave and perform like naive Bayes in most instances. This result has significant implications for both practitioners and researchers in terms of computational complexity, ensemble design and metalearning for algorithm selection. We outline the limits of the similarity between RBF and naive Bayes, and use metalearning to build a selection model capable of accurately discriminating between the two algorithms, so that extra computation is only incurred when it is likely to produce significant improvement in predictive accuracy.-
dc.languageEnglish-
dc.publisherIOS PRESS-
dc.titleOn the dangers of default implementations: The case of radial basis function networks-
dc.typeArticle-
dc.identifier.doi10.3233/IDA-140640-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTELLIGENT DATA ANALYSIS, v.18, no.2, pp.261 - 279-
dc.citation.titleINTELLIGENT DATA ANALYSIS-
dc.citation.volume18-
dc.citation.number2-
dc.citation.startPage261-
dc.citation.endPage279-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000332477600009-
dc.identifier.scopusid2-s2.0-84900663985-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFUNCTION NEURAL-NETWORKS-
dc.subject.keywordPlusTIME-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusACCURACY-
dc.subject.keywordPlusFACE-
dc.subject.keywordAuthorAlgorithm analysis-
dc.subject.keywordAuthornaive Bayes-
dc.subject.keywordAuthorRBF networks-
dc.subject.keywordAuthormetalearning-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE