Full metadata record

DC Field Value Language
dc.contributor.authorNa, Jin Hee-
dc.contributor.authorPark, Myoung Soo-
dc.contributor.authorKang, Woo-Sung-
dc.contributor.authorChoi, Jin Young-
dc.date.accessioned2024-01-20T10:32:29Z-
dc.date.available2024-01-20T10:32:29Z-
dc.date.created2021-09-05-
dc.date.issued2014-02-
dc.identifier.issn1433-7541-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127161-
dc.description.abstractLinear boundary discriminant analysis (LBDA) shows good feature extraction performance in the classification problem. However, LBDA suffers from small sample size (SSS) problem and the computation time of it increases exponentially for datasets that are not sufficiently large compared with the number of features. To release these problems, we reformulate LBDA using QR decomposition, and this results in both reducing computation time and resolving SSS problem while classification performance is maintained.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectDIMENSION REDUCTION ALGORITHM-
dc.titleLinear boundary discriminant analysis based on QR decomposition-
dc.typeArticle-
dc.identifier.doi10.1007/s10044-012-0285-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPATTERN ANALYSIS AND APPLICATIONS, v.17, no.1, pp.105 - 112-
dc.citation.titlePATTERN ANALYSIS AND APPLICATIONS-
dc.citation.volume17-
dc.citation.number1-
dc.citation.startPage105-
dc.citation.endPage112-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000330839400008-
dc.identifier.scopusid2-s2.0-84893701600-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDIMENSION REDUCTION ALGORITHM-
dc.subject.keywordAuthorLinear boundary discriminant analysis-
dc.subject.keywordAuthorQR decomposition-
dc.subject.keywordAuthorcomputation time-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE